The Funcionalization of Grade 4 Surface Used for Blood Contacting Implants

  • Marcin BasiagaEmail author
  • Magdalena Antonowicz
  • Witold Walke
  • Zbigniew Paszenda
  • Bogusław Ziębowicz
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 623)


The aim of this study was to evaluate selected functional qualities of pure titanium with modified surface which could be used for implants improvement. Modified titanium surface with various advanced engineering methods is widely used for example for heart valve prostheses [1], implantable rotary blood pumps [2] or surgical tools for implantation procedures. Pure titanium Grade 4 was selected for this research purposes and it was subjected to following surface modifications: electrochemical polishing and application of TiO2 film by ALD method. In order to assess the usability of proposed application technology, the examination of electrochemical properties has been conducted. Obtained results showed that the applied TiO2 layer in comparison to pure titanium has the positive effect on analysed properties. It can be also stated that the layer’s thickness, thereby the number of application cycles, had an impact on the obtained results. In addition, proper conditions’ selection of surface layers deposition had a crucial influence on the final form of the obtained layer.


cpTi TiO2 ALD electrochemical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gonsior, M., Kustosz, R., Kościelniak-Ziemniak, M., Wierzchoń, T.: Biocompatible Evaluation Of Biomaterials Used In The New Polish Extracorporeal Pulsatile Heart Assist Device ReligaHeart EXT, Archives of metallurgy and materials, 60 (3), 2271–2278 (2015)Google Scholar
  2. 2.
    Kustosz, R., Altyntsev, I., Darłak, M., Wierzchoń, T., Tarnowski, M., Gawlikowski, M., Gonsior, M., Kościelniak-Ziemniak, M.: The Tin Coatings Utilisation As Blood Contact Surface Modification In Implantable Rotary Left Ventricle Assist Device Religaheart, Archives of Metallurgy and Materials, 60 (3), 2253–2260 (2015)Google Scholar
  3. 3.
    Roguska, A., Pisarek, M., Belcarz, A., Marcon, L., Holdynski, M., Andrzejczuk, M., Janik-Czachor, M.: Improvement of the bio-functional properties of TiO2 nanotubes, Applied Surface Science, 388 Part B, 775–785 (2016)Google Scholar
  4. 4.
    Zieliński, A., Sobieszczyk, S., Seramak, T., Serbiński, W., Świeczko- ˙ Żurek, B., Ossowska A.: Biocompatibility and bioactivity of load-bearing metallic implants, Advances in Materials Science 10, 4, 21–31 (2010)Google Scholar
  5. 5.
    Wang, J.-L., Liu, R.L., Majumdar, T., Mantri, S.A., Ravi, V.A., Banerjee, R., Birbilis Acta Biomaterialia, N.: A closer look at the in vitro electrochemical characterisation of titanium alloys for biomedical applications using in-situ methods, In Press, Corrected Proof, Available online 16 March (2017)Google Scholar
  6. 6.
    Manjaiah, M., Laubscher, R., F.:Corrigendum to Effect of anodizing on surface integrity of grade 4 titanium for biomedical applications, Surface and Coatings Technology, 310 (25), 263–272 (2017)Google Scholar
  7. 7.
    Sitek, R., Kaminski, J., Borysiuk, J., Matysiak, H., Kubiak, K., Kurzydlowski, K.J.:Microstructure and properties of titanium aluminides on Ti6Al4V titanium alloy produced by chemical vapor deposition method, Intermetallics, 36, 36–44 (2013)Google Scholar
  8. 8.
    Szili, E., Kumar, S., Smart, R., Voelcker, N.: Generation of a stable surface concentration of amino groups on silica coated onto titanium substrates by the plasma enhanced chemical vapour deposition method, Applied Surface Science, 255, 6846–6850 (2009)Google Scholar
  9. 9.
    Li, F.,Li, J., Huang, T., Kou, H., Zhou, L.: Compression fatigue behavior and failure mechanism of porous titanium for biomedical applications, Journal of the Mechanical Behavior of Biomedical Materials, 65, 814–823 (2017)Google Scholar
  10. 10.
    Li, Y., Munir, S., Lin, J., Wen, C.: Titanium-niobium pentoxide composites for biomedical applications, Bioactive Materials, 1 (2), 127–131 (2016)Google Scholar
  11. 11.
    Martin, E., Lanzutti, A.,Paussa, L., Guzman, L., Fedrizzi, L.: Long term performance of atomic layer deposition coatings for corrosion protection of stainless steel, Materials and Corrosion, 66 (9), 909–914 (2015)Google Scholar
  12. 12.
    Purniawan, A., French, P.J.,Pandraud, G., Sarro P.M.:TiO2 ALD nanolayer as evanescent waveguide for biomedical sensor applications, Procedia Engineering, 5, 1131–1135 (2010)Google Scholar
  13. 13.
    Branch, B., Dubey, M., Anderson, A. S., Artyushkova, K., Baldwin, J. B., Petsev, D., Dattelbaum A. M.: Investigating phosphonate monolayer stability on ALD oxide surfaces, Applied Surface Science, 288 (1), 98–108 (2014)Google Scholar
  14. 14.
    Aarik, L., Arroval, T., Rammula, R., M´’n dar, H., Sammelselg, V., Aarik J.:Atomic Layer deposition of TiO2 from TiCl4 and O3, Thin Solid Films 542, M. R. Saleem, P. Silfsten, S. Honkanen, J. Turunen: Thin Solid Films 520, 100–107 (2013)Google Scholar
  15. 15.
    Basiaga, M., Staszuk, M., Walke, W., Opilski, Z.:Mechanical properties of ALD TiO 2 layers of stainless steel substrate, Materialwissenschaft undWerkstofftechnik, 47 (5), 512–520 (2016)Google Scholar
  16. 16.
    Basiaga, M., Jendruś, R.,Walke,W.,Paszenda, Z., Kaczmarek, M ., Popczyk, M.: Influence of Surface modification on properties of stainless steel used for implants, Archives of Metallurgy and Materials, 60 (4), 2965–2969 (2015)Google Scholar
  17. 17.
    Karambakhsh, A., Afshar, A., Malekinejad, P.: Corrosion Resistance and Color Properties of Anodized Ti-6Al-4V, Journal of Materials Engineering and Performance, 21, 121–127 (2012)Google Scholar
  18. 18.
    Standard: ASTM F2129 - Electrochemical Corrosion Testing of Surgical Implants (Standard Test Method for Conducting Cyclic Potentiodynamic Polarization)Google Scholar
  19. 19.
    Marciniak, J., Szewczenko, J., Kajzer, W.: Surface Modification Of Implants For Bone Surgery, Archives of Metallurgy and Materials, 60 (3B), 13–19 (2015)Google Scholar
  20. 20.
    Kiel, M., Szewczenko, J., Walke, W.:Application of EIS method for evaluation of physicochemical properties of modified Ti6Al4V ELI alloy, Przegląd Elektrotechniczny, 88 (12B), 232–235 (2012)Google Scholar
  21. 21.
    Standard: PN-EN ISO 10993-15 - Biological evaluation of medical devicesGoogle Scholar
  22. 22.
    Krauze, A., Ziębowicz, A., Marciniak J. :Corrosion resistance of intramedullary nails used in elastic osteosynthesis of children, Journal of Materials Processing Technology, 162-163, 209–214 (2005)Google Scholar
  23. 23.
    Basiaga, M., Walke, W., Staszuk, M., Kajzer, W., Kajzer, A., Nowińska, K.:Influence of ALD process parameters on the physical and chemical properties of the surface of vascular stents, Archives of Civil and Mechanical Engineering, 17, 32–42 (2017)Google Scholar
  24. 24.
    Basiaga, M., Kajzer,W.,Walke,W., Kajzer, A., Kaczmarek, M.: Evaluation of physicochemical properties of surface modified Ti6Al4V and Ti6Al7Nb alloys used for orthopedic implants, Materials Science and Engineering, C 68,851–860 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Marcin Basiaga
    • 1
    Email author
  • Magdalena Antonowicz
    • 1
  • Witold Walke
    • 1
  • Zbigniew Paszenda
    • 1
  • Bogusław Ziębowicz
    • 2
  1. 1.Faculty of Biomedical EngineeringSilesian University of TechnologyZabrzePoland
  2. 2.Faculty of Mechanical EngineeringSilesian University of TechnologyGliwicePoland

Personalised recommendations