Advertisement

The heat treatment influence on the structure and mechanical properties of Ti6Al4V alloy manufactured by SLM technology

  • Marta Kiel-JamrozikEmail author
  • Wojciech Jamrozik
  • Ilona Witkowska
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 623)

Abstract

Titanium alloy can be processed via advanced powder manufacturing routes such as selective laser melting (SLM). This field is receiving increased attention from various manufacturing sectors including medical device sectors. These advanced manufacturing techniques associated advantages include: design flexibility, reduced production cost, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. Unfortunately, this production technique is characterized by high temperature gradients, which results in the build-up of thermal stresses. This is the reason why heat treatments have to be used. In this research, the effect of several heat treatments on the microstructure and mechanical properties of Ti6Al4V alloy processed by SLM are studied.

Keywords

biomaterials Ti6Al4V alloy SLM heat treatment structure mechanical Properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kiel, M., Szewczenko, J., Marciniak, J., Nowińska, K.: Electrochemical properties of Ti-6Al-4V ELI alloy after anodization. In: Proceedings of the Third International Conference on Information Technologies in Biomedicine. ITIB’12, Berlin, Heidelberg, Springer-Verlag (2012) 369–378Google Scholar
  2. 2.
    Kiel, M., Szewczenko, J., Walke, W., Maricniak, J.: Application of eis method for evaluation of physicochemical properties of modified Ti-6Al-4V ELI alloy. Przegląd Elektrotechniczny 88 (12B) (2012) 232–235Google Scholar
  3. 3.
    Kiel-Jamrozik, M., Szewczenko, J., M.Basiaga, Nowińska, K.: Technological capabilities of surface layers formation on implants made of Ti-6Al-4V ELI alloy. Acta of Bioengineering and Biomechanics 17 (2015) 31–37Google Scholar
  4. 4.
    Szewczenko, J., Basiaga, M., Grygiel, M., Kiel-Jamrozik, M., Kaczmarek, M.: Corrosion resistance of Ti6Al7Nb alloy after various surface modifications. In: Corrosion and Surface Engineering. Volume 227 of Solid State Phenomena., Trans Tech Publications (2015) 48–486Google Scholar
  5. 5.
    Chlebus, E.: Innowacyjne technologie Rapid Prototyping - Rapid Tooling w rozwoju produktu. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław (2003)Google Scholar
  6. 6.
    Thijs, L., Verhaeghe, F., Craeghs, T., Humbeeck, J.V., Kruth, J.P.: A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Materialia 58(9) (2010) 3303–3312Google Scholar
  7. 7.
    Krakhmalev, P., Fredriksson, G., Yadroitsava, I., Kazantseva, N., du Plessis, A., Yadroitsev, I.: Deformation behavior and microstructure of Ti6Al4V manufactured by SLM. Physics Procedia 83 (2016) 778–788Google Scholar
  8. 8.
    Vrancken, B., Thijs, L., Kruth, J.P., Humbeeck, J.V.: Heat treatment of Ti6Al4V produced by selective laser melting: Microstructure and mechanical properties. Journal of Alloys and Compounds 541 (2012) 177185Google Scholar
  9. 9.
    Murr, L., Quinones, S., Gaytan, S., Lopez, M., Rodela, A., Martinez, E., Hernandez, D., Martinez, E., Medina, F., Wicker, R.: Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials 2(1) (2009) 20–32Google Scholar
  10. 10.
    Song, B., Dong, S., Zhang, B., Liao, H., Coddet, C.: Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V. Materials and Design 35 (2012) 120–125Google Scholar
  11. 11.
    Thone, M., Leuders, S., Riemer, A., Troster, T., Richard, H.: Influence of heat-treatment on selective laser melting products - e.g. Ti6Al4V. Solid Freeform Fabrication Proceedings 26 (2012) 492–498 Annual international solid freeform fabrication symposium by University of Texas.Google Scholar
  12. 12.
    Campanelli, S.L., Contuzzi, N., Ludovico, A.D., Caiazzo, F., Cardaropoli, F., Sergi, V.: Manufacturing and characterization of Ti6Al4V lattice components manufactured by selective laser melting. Materials 7(6) (2014) 4803–4822Google Scholar
  13. 13.
    Sidambe, A.T.: Biocompatibility of advanced manufactured titanium implants - a review. Materials 7(12) (2014) 8168–8188Google Scholar
  14. 14.
    Ramosoeu, M., Chikwanda, H., Bolokang, A., Booysen, G., Ngonda, T.: Additive manufacturing: Characterization of Ti-6Al-4V alloy intedned for biomedical application. The Southern African Institute of Mining and Metallurgy (2010) 337–343Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Marta Kiel-Jamrozik
    • 1
    Email author
  • Wojciech Jamrozik
    • 2
  • Ilona Witkowska
    • 1
  1. 1.Faculty of Biomedical EngineeringSilesian University of TechnologyZabrzePoland
  2. 2.Faculty of Mechanical EngineeringSilesian University of TechnologyGliwicePoland

Personalised recommendations