Advertisement

Impact of Vessel Mechanical Properties on Hemodynamic Parameters of Blood Flow

  • Wojciech WolańskiEmail author
  • Bożena Gzik-Zroska
  • Kamil Joszko
  • Edyta Kawlewska
  • Marta Sobkowiak
  • Marek Gzik
  • Wojciech Kaspera
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 623)

Abstract

The main purpose of this work was the analysis of the impact of mechanical properties of blood vessels on the alteration of hemodynamic parameters of blood. Within the framework of this research strength tests of blood vessels were conducted, which aimed to determine mechanical properties by means of a static tensile test and a system of Digital Image Correlation (mDIC). The tests were performed using static strength testing machine MTS Insight 2. Subsequently, on the basis of computer tomography (CT) images, two numerical models of blood vessels were formulated in the Ansys CFX software programme. The first model does not take into consideration the changes of the artery geometry, while in the second model the vessel walls were modelled as deformable elements having preset mechanical properties. The developed numerical models enabled the assessment of the hemodynamic parameters as well as the state of stress and deformation of the walls during the blood flow through the vessel.

Keywords

Computational fluid dynamics (CFD) blood flow artery mechanical properties mechanical tests 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alishahi M., Alishahi M.M., Emdad H.: Numerical simulation of blood flow in a flexible stenosed abdominal real aorta, Scientia Iranica B, 18 (6), 1297-1305 (2011).Google Scholar
  2. 2.
    Brian D. Stemper, Yoganandan N., Stineman M. R., Gennarelli T. A., Baisden J. L. and Pintar F. A.: Mechanics of Fresh, Refrigerated, and Frozen Arterial Tissue. AJournal of Surgical Research. 139, 236-242 (2007).Google Scholar
  3. 3.
    Ferruzzi J., Vorp D. A. and Humphrey J. D.: On constitutive descriptors of the biaxial mechanical behavior of human abdominal aorta and aneurysms. J. R. Soc. Interface. 8 435-450 (2011).Google Scholar
  4. 4.
    Fung, Y.C.: Biomechanics. Mechanical Properties of Living Tissues, 2nd edition, Springer, New York (1993).Google Scholar
  5. 5.
    Gzik-Zroska B., Wolański W., Gzik M.: Engineering-aided treatment of chest deformi-ties to improve the process of breathing. International Journal for Numerical Methods in Biomedical Engineering, Vol.29, No.9, pp. 926-937 (2013).Google Scholar
  6. 6.
    Gzik-Zroska B., Joszko K., WolańskiW., Gzik M.: Development of new testing method of mechanical properties of porcine coronary arteries, Information technologies in medicine. 5th International conference, ITIB 2016, Kamień Śląski, Poland, June 20-22, 2016. Proceedings. Vol. 2. Eds. Ewa Piętka, Paweł Badura, Jacek Kawa, Wojciech Więcławek. Cham : Springer, 289-297, bibliogr. 25 poz. (2016).Google Scholar
  7. 7.
    Holzapfel, G.A., Ogden, R. W.: Constitutive modelling of arteries. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2118) 1551-1597 (2010).Google Scholar
  8. 8.
    Humphrey J.D., Holzapfel G.A. Review: Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. Journal of Biomechanics. 45, 805-814 (2012).Google Scholar
  9. 9.
    Lasheras, J. C.: The Biomechanics of Arterial Aneurysms. Annual Review of Fluid Mechanics. 39, 293-319 (2007).Google Scholar
  10. 10.
    Sharma G.C., Jain M., Kumar A.: Performance Modeling and Analysis of Blood Flow in Elastic Arteries, Mathematical and Computer Modelling, 39, 1491-1499 (2004).Google Scholar
  11. 11.
    Schulze-Bauer C.A., Holzapfel G.: Determination of constitutive equations for human arteries from clinical data. Journal of Biomechanics. 36, 165-169 (2003).Google Scholar
  12. 12.
    Walmsley J., Campling M., Chertkow H.: Interrelationships among wall structure, smooth muscle orientation, and contraction in human major cerebral arteries. Stroke 14, 5 (1983), 781- 790.Google Scholar
  13. 13.
    Wolański W., Gzik-Zroska B., Joszko K., Gzik M., Sołtan D.: Numerical analysis of blood flow through artery with elastic wall of vessel, [in]: Innovations in Biomedical Engineering, Proceedings IiBE 2016, Eds. Marek Gzik, Ewaryst Tkacz, Zbigniew Paszenda, Ewa Piętka, Cham: Springer, 193-200 (2017).Google Scholar
  14. 14.
    Xiuqing Qian, Yan Wang, Zhilun Zhou, Zhicheng Liu: Effects of Material Properties on Hemodynamic Parameters of the Coronary Artery, Computing in Cardiology; 38, 29-32 (2011).Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Wojciech Wolański
    • 1
    Email author
  • Bożena Gzik-Zroska
    • 2
  • Kamil Joszko
    • 1
  • Edyta Kawlewska
    • 1
  • Marta Sobkowiak
    • 1
  • Marek Gzik
    • 1
  • Wojciech Kaspera
    • 3
  1. 1.Department of Biomechatronics Faculty of Biomedical EngineeringSilesian University of Technology, ul. F. DGliwicePoland
  2. 2.Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical EngineeringSilesian University of Technology, ul. F. DGliwicePoland
  3. 3.Department of NeurosurgeryMedical University of Silesia,Regional HospitalKatowicePoland

Personalised recommendations