Advertisement

Determination of the number and frequency of the steps for gait with elbow crutches based on a crutch acceleration

  • Magdalena DługoszEmail author
  • Piotr Wodarski
  • Andrzej Bieniek
  • Miłosz Chrzan
  • Marek Gzik
  • Kamil Joszko
  • Jarosław Derejczyk
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 623)

Abstract

Gait is one of the basic and most important forms of human locomotion. Gait can be described by parameters such as: speed, step length, stepping rate, ground reaction force values. One way to determine these parameters is analysis of acceleration of selected body segments. There are not many algorithms in the literature that could be used to analyze gait with the elbow crutches. Accordingly, an algorithm should be developed to determine, for example, the frequency and number of steps based on the crutch acceleration. In the following study, signal from IMU sensor located on elbow crutch was used to determine the parameters. The algorithm based on double filtration of recorded acceleration and peak detections from obtained signal. Results were compared and correlated with MVN Biomech motion capture system (high accuracy system). The discussion chapter considers uncertainty of the measuring methodology and the possibilities of using the designed system.

Keywords

human gait crutches acceleration number of step determination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarez, D., Gonzalez, R.C., Lopez, A., Alvarez, J.C.: Comparison of Step Length Estimators from Weareable Accelerometer Devices. EMBS Annual International Conference 2006Google Scholar
  2. 2.
    Gafurov, D., Helkala, K., Srndrol, T.: Biometric Gait Authentication Using Accelerometer Sensor. Journal of Computers, VOL. 1, NO. 7, October/November 2006Google Scholar
  3. 3.
    Gil-Agudo, A., Pérez-Rizo, E., Del Ama-Espinosa, A., Crespo-Ruiz, B., Pérez-Nombela, S., Sánchez-Ramos, A.: Comparative biomechanical gait analysis of patients with central cord syndrome walking with one crutch and two crutches. Clinical Biomechanics 24 (2009) 551- 557Google Scholar
  4. 4.
    Glowinski, et. al. Inertial sensors and wavelets analysis as a tool for pathological gait identification, Springer, Innovations in Biomedical Engineering, Advances in Intelligent Systems and Computing, DOI  10.1007/978-3-319-47154-9_13, 2016
  5. 5.
    Jun-Tian Zhang, Alison C Novak, Brenda Brouwer, Qingguo Li: Concurrent validation of Xsens MVN measurement of lower limb joint angular kinematics, Physiological Measurement, Volume 34, Number 8, 2013Google Scholar
  6. 6.
    Levine, D., Richards, J., Whittle, M.H.: Whittle’s Gait Analysis. Elsevier Urban & Partner 2014, chapter 2Google Scholar
  7. 7.
    Maj, P., Barczewska, K., Drozd, A., Kowalski, J.: Akcelerometryczny system badania i analizy chodu [Gait analysis system based on accelerometers]. PAK vol. 58, nr 4/2012Google Scholar
  8. 8.
    Nowakowska K., Michnik R., Jochymczyk-Woźniak K., Jurkojć J., Mandera M., Kopyta I.: Application of gait index assessment to monitor the treatment progress in patients with cerebral palsy (in:) Information Technologies in Medicine 5th International Conference, ITIB, Kamień Śląski, Poland, June 20-22, 2016 Proceedings, Advances in Intelligent System and Computing 472Google Scholar
  9. 9.
    Nowakowska K., Michnik R., Jochymczyk-WoźniakK., Jurkojć J., Kopyta I.: Evaluation of locomotor function in patients with CP based on muscle length changes. (in:) Innovation in biomedical engineering, Gzik M., Tkacz E., Paszenda Z., Piętka E.(eds.) Advances in Intelligent System and Computing, vol. 526, p. 161-168Google Scholar
  10. 10.
    Requejo, P.S., Wahl, D.P., Bontrager, E.L., Newsam, C.J., Gronley, J.K., Mulroy, S.J., Perry, J.: Upper extremity kinetics during Lofstrand crutch-assisted gait. Medical Engineering & Physics 27 (2005) 19-29Google Scholar
  11. 11.
    Yun, X., Bachmann, E.R.: Design, Implementation, and Experimental Results of a Quaternion- Based Kalman Filter for Human Body Motion Tracking. IEEE Transactions on robotics, VOL. 22, NO. 6, December 2006Google Scholar
  12. 12.
    Zijlstra, W., Hof, A.L.: Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Elsevier 2002Google Scholar
  13. 13.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Magdalena Długosz
    • 1
    Email author
  • Piotr Wodarski
    • 1
  • Andrzej Bieniek
    • 1
  • Miłosz Chrzan
    • 1
  • Marek Gzik
    • 1
  • Kamil Joszko
    • 1
  • Jarosław Derejczyk
    • 2
  1. 1.Faculty of Biomedical EngineeringSilesian University of TechnologyGliwicePoland
  2. 2.Szpital Geriatryczny im. Jana Pawła IIKatowicePoland

Personalised recommendations