Advertisement

The higher-order spectra as a tool for the identification of patients diagnosed with various cardiac diseases

  • Zbigniew BudzianowskiEmail author
  • Ewaryst Tkacz
  • Wojciech Oleksy
  • Małgorzata Garbacik
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 623)

Abstract

This article explores the possibility of using the higher-order spectra to identify different types of diseases. In order to assess the effectiveness of such tool the HRV (Heart Rate Variability) recordings obtained from patients suffering from three different cardiac problems are listed and compared to the results recorded for healthy subjects. Each set of HRV signals is processed with bispectral and bicoherent analysis. In both cases three statistical parameters are observed. For each type of the investigated analysis the parameters under examination differ enough to allow clear distinction of the specific cardiac disease. The obtained results show usefulness of higher-order spectra as a tool for differentiation between specific diseases. Authors believe that further work would greatly improve potential of the described tool, allowing to identify number of different diseases or even stage of the illness or progress in the rehabilitation process.

Keywords

Heart rate variability higher-order statistics signal processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    PhysioNet [Online], available: http://physionet.org/, last access: March 2015.
  2. 2.
    A. Swami, J. Mendel i L. Chrysostomos Higher-Order Spectral Analysis Toolbox: For Use with MATLAB 1993: The Mathwork.Google Scholar
  3. 3.
    A. Goshvarpour i A. Goshvarpour Comparison of higher order spectra in heart rate signals during two techniques of meditation: Chi and Kundalini meditation 2013: Cognitive Neurodynamics.Google Scholar
  4. 4.
    C. Chua Analysis of Cardiac and Epileptic Signals Using Higher Order Spectra 2010: PhD Thesis, Queensland: Queensland University of Technology.Google Scholar
  5. 5.
    R. Gałąska Analiza fraktalna zmiennoÅŻci rytmu zatokowego u pacjentow z uposledzona funkcja lewej komory miesnia serwcowego 2006: PhD Thesis, Gdansk: Akademia Medyczna w Gdansku.Google Scholar
  6. 6.
    T. Krauze, P. Guzik i H. Wysocki, Zmiennosc rytmu serca: aspekty techniczne 2001: Nowiny lekarskie.Google Scholar
  7. 7.
    P. Mazur, R. Pfitzner i P. Matusiki, Analiza parametrow czestotliwosciowych zmiennosci rytmu serca po pomostowaniu aortalno-wiencowym 2011: Folia Cardiologica.Google Scholar
  8. 8.
    M. Klopocka, J. Budzynski, R. Bujak, M. Swiatkowski, W. Sinkiewicz i M. Ziolkowski, Analiza parametrow czestotliwosciowych zmiennosci rytmu serca po pomostowaniu aortalnowiencowym 2011: Folia Cardiologica.Google Scholar
  9. 9.
    I. Jouny i R. Moses, The Bispectrum of Complex Signals: Definitions and Properties 1992: IEEE Transactions on Signal Processing.Google Scholar
  10. 10.
    S. Saliu, A. Birand i G. Kudaiberdieva, Bispectral Analysis of Heart Rate Variability Signal 2002.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Zbigniew Budzianowski
    • 1
    Email author
  • Ewaryst Tkacz
    • 1
  • Wojciech Oleksy
    • 1
  • Małgorzata Garbacik
    • 1
  1. 1.Silesian University of TechnologyZabrzePoland

Personalised recommendations