Advertisement

Novel tumor protein markers collection by the use of highly porous organic material for the upper and lower respiratory system – preliminary results

  • Andrzej S. SwinarewEmail author
  • Barbara Mika
  • Jarosław Paluch
  • Jadwiga Gabor
  • Marta Łężniak
  • Hubert Okła
  • Tomasz Flak
  • Beata Swinarew
  • Klaudia Kubik
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 623)

Abstract

In the era of XXI century, when modern imaging techniques allows to increase detection of upper and lower respiratory tract cancer, still almost 75% of patients are diagnosed at an advantage stage. A very important problem in diagnostic practice is a general trend to use routine methods and the lack of new techniques exploration. Nowadays laboratory diagnosticians known defects of used methods which result limited effectiveness. Despite this fact too little attention is paid to the confrontation of biomedical and physicochemical views what follows to develop new methods within the framework of interdisciplinary research.

Late detection of cancer changes is often associated with inability to take effective treatment. Most modern measurement techniques based on liquid chromatography combined with mass spectrometry gives opportunity to detect millions particles of substances. These techniques are being used by scientists from all over the world to create database of proteins, which are characteristic for almost all pathological changes.

Keywords

protein markers cancer cancer diagnostics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jemal A, Siegel R,Ward E, Murray T, Xu J, Smigal C, Thun MJ. Cancer Statistics. CA Cancer J Clin 56: 106–30.Google Scholar
  2. 2.
    Patz EF. Jr, Campa MJ, Gottlin EB, Kusmartseva I, Guan XR, Herndon JE. Panel of Serum biomarkers for the diagnosis of lung cancer. J Clin Oncol. 2007; 25: 5578–83.Google Scholar
  3. 3.
    Brambilla C, Fievet F, Jeanmart M, de Fraipont F, Lantuejoul S, Frappat V, Ferretti G, Brichon PY, Moro-Sibilot D. Early detection of lung cancer: role of biomarkers. Eur Respir J. 2003; 21: 36–44.Google Scholar
  4. 4.
    Poli D, Carbognani P, Corradi M, Goldoni M, Acampa O, Balbi B, Bianch L, Rusca M, Mutti A. Exhaled voatile organic compounds In patient with non-small cell lung cancer: cross sectional and nested short-term follow-up study. Respir Res. 2005; 6: 71–81.Google Scholar
  5. 5.
    Horvath I, Lazar Z, Gyulai N, Kollai M, Losonczy G. Exhaled biomarkers in lung cancer. Eur Respir J. 2009; 34: 261–75.Google Scholar
  6. 6.
    Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer-A survey. Biochim Biophys Acta. 2007; 1775: 181–232.Google Scholar
  7. 7.
    Tomita H, Ichikawa D, Ikoma D, Sai S, Tani N, Ikoma H, Fujiwara H, Kikuchi S, Okamoto K, Ochiai T, Otsuji E. Quantification of circulating plasma DNA fragments as tumor markers in patients with esophageal cancer. Anticancer Res. 2007; 27: 2737–42.Google Scholar
  8. 8.
    Conrad DH, Goyette J, Thomas PS. Proteomics as a method for early detection of cancer: a review of proteomics, exhaled breath condensate, and lung cancer screening. J Gen Intern Med. 2007; 23: 78–84.Google Scholar
  9. 9.
    Skroński M, Szpechciński A, Chorostowska- Wynimko J. Current methods to detect EGFR gene mutations as predictive factor for targeted therapies in non-small cell lung cancer – is there a “golden standard” in diagnostics? Pneumonol Alergol Pol. 2014; 82: 311–22.Google Scholar
  10. 10.
    Chrostowska-Wynimko J, Skroński M, Szpechciński A. Molekularne markery prognostyczne i predykcyjne w diagnostyce niedrobnokomórkowego raka płuca. Onkologia Info. 2011; 3: 160–7.Google Scholar
  11. 11.
    Schneider J, Velcovsky HG, Morr H, Katz N, Neu K, Eigenbrodt E. Comparison of the tumor markers tumor M2-PK, CEA, CYFRA 21-1, NSE and SCC in the diagnosis of lung cancer. Anticancer Res. 2000; 20: 5053–5058.Google Scholar
  12. 12.
    Stolarzewicz A, Morejko-Buż B, Grobelny Z, Pisarski W. Spontaneous self-oligomerization of potassium glycidoxide – A simple way to new cyclic polyfunctional macroinitiator. React Funct.Polym. 2005; 65: 259–66.Google Scholar
  13. 13.
    Morejko B, Stolarzewicz A, Grobelny Z, Piekarnik B, Niedziela T, Trzebicka B. New kind of star-shaped polyethers prepared with cyclic oligo(potassium glycidoxide) as a macroinitiator. React Funct Polym. 2007; 67: 669–74.Google Scholar
  14. 14.
    Stolarzewicz A, Morejko-Buż B, Grobelny Z, Pisarski W, Lanzendörfer M, Müller A. Structure of poly(propylene oxide) obtained with potassium glycidoxide in the presence of crown ether. Rapid Commun Mass Spectrom. 2004. 18: 716–20.Google Scholar
  15. 15.
    Kazanskii KS. Donor-acceptor and solvation interactions in anionic polymerization of some heterocycles. Pure Appl Chem. 1981; 53: 1645–61.Google Scholar
  16. 16.
    Arkhipovich GN, Dubrowskii SA, Kazanskii KS, Ptitsina NV, Shupik AN. Study of solvation of alkali cations with poly(ethylene oxide). Eur Polym J. 1982. 18: 569–76.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Andrzej S. Swinarew
    • 1
    Email author
  • Barbara Mika
    • 2
  • Jarosław Paluch
    • 3
  • Jadwiga Gabor
    • 1
  • Marta Łężniak
    • 1
  • Hubert Okła
    • 1
  • Tomasz Flak
    • 1
  • Beata Swinarew
    • 4
  • Klaudia Kubik
    • 1
  1. 1.Institute of Materials Science, Faculty of Computer Science and Material ScienceUniversity of Silesia in KatowiceChorzówPoland
  2. 2.Department of Biosensors and Biomedical Signals ProcessingSilesian University of TechnologyZabrzePoland
  3. 3.Department and Clinic of Laryngology, School of Medicine in KatowiceMedical University of Silesia in KatowiceKatowicePoland
  4. 4.Institute for Engineering of Polymer Materials and Dyes, Paint and Plastics DepartmentGliwicePoland

Personalised recommendations