Field modelling of several electromagnetic drive variants of the micropump blood transfusion device

  • Sebastian BartelEmail author
  • Zbigniew Pilch
  • Tomasz Trawiński
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 623)


In this article the trends in constructing and modelling of devices supporting the blood flow in the human heart will be presented. The latest Eurotransplant statistics report on the incidence of heart failure and the latest trends in the treatment of the failing heart will be presented in chapter one. Trends in developing ventricular assist devices and the number of implanted device types supporting the dysfunctional heart will be discussed in chapter two. Finally there will be shown a modelling method of the electromagnetic system of pulsatile artificial hearts with the research results.


Heart failure micropump artificial heart VAD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartel, S., Trawiński, T.: Design issues of electromagnetic micropump. 15th International Workshop on Research and Education in Mechatronics (REM), 9-11 September 2014, El Gouna, Egypt. Piscataway: Institute of Electrical and Electronics Engineers, pp. 1–7, (2014).Google Scholar
  2. 2.
    Bartel, S., Trawiński, T.: The influence of the micropump‘s winding shape and magnetic circuit configuration on the generated electromagnetic torque characteristic. Part I: FEM analysis, Przeglad Elektrotechniczny, R92, pp. 240–245, (2016).Google Scholar
  3. 3.
    Bartunek, J., Vanderheyden, M.: Transplantation approach to heart failure. Springer Science+Business Media New York, (2013).Google Scholar
  4. 4.
  5. 5.
  6. 6.
  7. 7.
    Wenyu Shi, Meng-Sang Chew: Mathematical and Physical Models of a Total Artificial Heart. 2009 IEEE International Conference on Control and Automation Christchurch, New Zealand, December 9-11, pp. 637–642, (2009).Google Scholar
  8. 8.
    Shoaib, M.S.R., Haque, M.A., Asaduzzaman, M.: Mathematical Modeling of the Heart. 6th International Conference on Electrical and Computer Engineering ICECE 2010, 18-20 December 2010, Dhaka, Bangladesh, pp. 626–629, (2010).Google Scholar
  9. 9.
    Yalincinkaya, F., Kizikaplan, E., Erbas, A.: Mathematical Modelling of Human Heart as a Hydroelectromechanical System, 8th International Conference on Electrical and Electronics Engineering (ELECO), pp. 362–366, (2013).Google Scholar
  10. 10.
    Goldoozian, L. S., Zahedi, E.: Mathematical modeling of heart rate and blood pressure variations due to changes in breathing pattern. Proceedings of 20th Iranian Conference on Biomedical Engineering (ICBME 2013), University of Tehran, Tehran, Iran, December 18-20, pp. 54–58, (2013).Google Scholar
  11. 11.
    G. Konieczny, T. Pustelny, M. Satkiewicz, M. Gawlikowski, „Optoelectronic system for the determination of blood volume in pneumatic heart assist devices” Konieczny et al. BioMed Eng OnLine (2015).Google Scholar
  12. 12.
    M. Gawlikowski, T. Pustelny, R. Kustosz, M. DarÅĆak: Non invasive blood volume measurment in pneumatic ventricular assist device POLVAD. Fundation for Cardiac Sugery Development, Zabrze Poland, Department of Optoelectronics, Silesian University of Technology, Gliwice Poland, Molecular and Quantum Acoustics vol. 27, (2006).Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Sebastian Bartel
    • 1
    Email author
  • Zbigniew Pilch
    • 1
  • Tomasz Trawiński
    • 1
  1. 1.Faculty of Electrical Enginieering, Mechatronics DepartmentSilesian University of TechnologyGliwicePoland

Personalised recommendations