Advertisement

Value-At-Risk Forecasting of the CARBS Indices

  • Coenraad C. A. Labuschagne
  • Niel Oberholzer
  • Pierre J. Venter
Conference paper
Part of the Springer Proceedings in Business and Economics book series (SPBE)

Abstract

The purpose of this paper is to use calibrated univariate GARCH family models to forecast volatility and value at risk (VaR) of the CARBS indices and a global minimum variance portfolio (GMVP) constructed using the CARBS equity indices. The reliability of the different volatility forecasts is tested using the mean absolute error (MAE) and the mean squared error (MSE). The rolling forecast of VaR is tested using a back-testing procedure. The results indicate that the use of a rolling forecast from a GARCH model when estimating VaR for the CARBS indices and the GMVP is not a reliable method.

References

  1. Alberg, D., Shalit, H., & Yosef, R. (2008). Estimating stock market volatility using asymmetric GARCH models. Applied Financial Economics, 18(15), 1201–1208.CrossRefGoogle Scholar
  2. Braione, M., & Scholtes, N.K. (2016). Forecasting value-at-risk under different distributional assumptions. Econometrics, 4(1), 3.CrossRefGoogle Scholar
  3. Brooks, C. (2014). Introductory econometrics for finance. Cambridge: Cambridge University Press.Google Scholar
  4. Embrechts, P., Frey, R., & McNeil, A. (2005). Quantitative risk management (Princeton Series in Finance, Vol. 10). Princeton: Princeton University Press.Google Scholar
  5. Ghalanos, A. (2014). Rugarch: Univariate GARCH models, R package version 1.3-3.Google Scholar
  6. Hull, J. (2009). Options, futures and other derivatives (7th ed.). Boston: Pearson Education.Google Scholar
  7. Hull, J. (2012). Risk management and financial institutions (3rd ed.). New York: Wiley.Google Scholar
  8. JimenezMartin, J.A., McAleer, M., & PrezAmaral, T. (2009). The ten commandments for managing value at risk under the Basel II Accord. Journal of Economic Surveys, 23(5), 850–855.CrossRefGoogle Scholar
  9. Narsoo, J. (2016). Evaluation of GARCH-Type models in volatility and value-at-risk forecasting: evidences from USD/MUR exchange rates. University of Mauritius Research Journal, 22, 1–7.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Coenraad C. A. Labuschagne
    • 1
  • Niel Oberholzer
    • 1
  • Pierre J. Venter
    • 1
  1. 1.Department of Finance and Investment ManagementUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations