Skip to main content

Electrospun Nanofibrous Nerve Conduits

  • Chapter
  • First Online:
Electrospun Biomaterials and Related Technologies
  • 569 Accesses

Abstract

An injury to the human nervous system, which plays a major role in our daily lives by being involved in our thought and action processes, has been one of the greatest issues in the medical field. Social costs are considerably high because of these injuries and the many ongoing studies searching for cures to nervous system injuries. As a result of these efforts, electrospinning technology has been found to a suitable alternative to fabricating scaffolds for nerve regeneration. The electrospun nanofibrous scaffold can provide the regenerating nervous system with cell-friendly environments that have sufficient porosity, mechanical strength, guidance cues, etc. First, the anatomies of the central and peripheral nervous systems and their regeneration mechanisms are introduced and compared to each other. Second, the mechanisms, requirements, and favored properties are discussed. Finally, various fabrication methods and the current evolving concept of electrospun nerve conduits with functionalization strategies such as cell loading, neurotrophic biomolecule or nanoparticle immobilization, and conductive polymer use are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

a-FGF:

Acidic fibroblast growth factor

ASIA:

American Spinal Injury Association

ATF-3:

Activating transcription factor-3

BDNF:

Brain-derived neurotrophic factor

CNS:

Central nervous system

CNTF:

Ciliary neurotrophic factor

DRG:

Dorsal root ganglia

ECM:

Extracellular matrix

EMSCs:

Ectomesenchymal stem cells

GAP-43:

Growth-associated protein-43

GDNF:

Glial cell line-derived neurotrophic factor

GVHD:

Graft-versus-host disease

MAIs:

Myelin-associated inhibitors

MSCs:

Mesenchymal stem cells

MWCNT:

Multi-walled carbon nanotubes

NGFs:

Nerve growth factors

NPCs:

Neural progenitor cells

NPs:

Nanoparticles

NRG1:

Neuregulin 1

NSCs:

Neural stem cells

NT-3:

Neurotrophin-3

NTFs:

Neurotrophic factors

OECs:

Olfactory ensheathing cells

OEG:

Olfactory ensheathing glia

PAN:

Polyacrylonitrile

PCL:

Polycaprolactone

PE:

Polyethylene

PHB:

Poly-β-hydroxybutyrate

PLGA:

Poly(lactide-co-glycolide)

PNS:

Peripheral nervous system

PPy:

Polypyrrole

PVC:

Polyvinyl chloride

RAGs:

Regeneration-associated genes

rNSCs:

Rat neural stem cells

SCI:

Spinal cord injuries

siRNA:

Small-interfering RNA

Sox11:

SRY-box containing gene 11

SPRR1A:

Small proline-repeat protein 1A

SWCNT:

Single-walled carbon nanotube

TF-MSNs:

Transferrin-modified mesoporous silica nanoparticles

VEGF:

Vascular endothelial growth factor

α1-GP:

Alpha-1 glycoprotein

References

  1. Hall JE, Guyton AC (2011) Guyton and Hall textbook of medical physiology, 12th edn. Saunders/Elsevier, Philadelphia, PA

    Google Scholar 

  2. Kwon BK, Okon E, Hillyer J, Mann C, Baptiste D, Weaver LC, Fehlings MG, Tetzlaff W (2011) A systematic review of non-invasive pharmacologic neuroprotective treatments for acute spinal cord injury. J Neurotrauma 28(8):1545–1588. https://doi.org/10.1089/neu.2009.1149

    Article  PubMed  PubMed Central  Google Scholar 

  3. Han D, Cheung KC (2011) Biodegradable cell-seeded nanofiber scaffolds for neural repair. Polymers-Basel 3(4):1684–1733. https://doi.org/10.3390/polym3041684

    Article  CAS  Google Scholar 

  4. National Spinal Cord Injury Statistical Center (NSCISC). Available online: https://www.nscisc.uab.edu/. Accessed 10 Jan 2017 (2015)

    Google Scholar 

  5. Kwon BK, Okon EB, Plunet W, Baptiste D, Fouad K, Hillyer J, Weaver LC, Fehlings MG, Tetzlaff W (2011) A systematic review of directly applied biologic therapies for acute spinal cord injury. J Neurotrauma 28(8):1589–1610. https://doi.org/10.1089/neu.2009.1150

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sykova E, Homola A, Mazanec R, Lachmann H, Konradova SL, Kobylka P, Padr R, Neuwirth J, Komrska V, Vavra V, Stulik J, Bojar M (2006) Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant 15(8–9):675–687

    Article  PubMed  Google Scholar 

  7. Geron C (2009) World’s first clinical trial of human embryonic stem cell therapy cleared. Regen Med 4(2):161

    Google Scholar 

  8. Ruijs AC, Jaquet JB, Kalmijn S, Giele H, Hovius SE (2005) Median and ulnar nerve injuries: a meta-analysis of predictors of motor and sensory recovery after modern microsurgical nerve repair. Plast Reconstr Surg 116(2):484–494; discussion 495-486

    Article  CAS  PubMed  Google Scholar 

  9. Berger A, Millesi H (1978) Nerve grafting. Clin Orthop Relat Res 133:49–55

    Google Scholar 

  10. Mikami Y, Nagano A, Ochiai N, Yamamoto S (1997) Results of nerve grafting for injuries of the axillary and suprascapular nerves. J Bone Joint Surg Br 79(4):527–531

    Article  CAS  PubMed  Google Scholar 

  11. Barton MJ, Morley JW, Stoodley MA, Lauto A, Mahns DA (2014) Nerve repair: toward a sutureless approach. Neurosurg Rev 37(4):585–595. https://doi.org/10.1007/s10143-014-0559-1

    Article  PubMed  Google Scholar 

  12. Phillips JB, Bunting SC, Hall SM, Brown RA (2005) Neural tissue engineering: a self-organizing collagen guidance conduit. Tissue Eng 11(9–10):1611–1617. https://doi.org/10.1089/ten.2005.11.1611

    Article  CAS  PubMed  Google Scholar 

  13. de Ruiter GC, Malessy MJ, Yaszemski MJ, Windebank AJ, Spinner RJ (2009) Designing ideal conduits for peripheral nerve repair. Neurosurg Focus 26(2):E5. https://doi.org/10.3171/FOC.2009.26.2.E5

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kim JI, Hwang TI, Aguilar LE, Park CH, Kim CS (2016) A controlled design of aligned and random nanofibers for 3D bi-functionalized nerve conduits fabricated via a novel electrospinning set-up. Sci Rep 6:23761. https://doi.org/10.1038/srep23761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang F, Murugan R, Wang S, Ramakrishna S (2005) Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26(15):2603–2610. https://doi.org/10.1016/j.biomaterials.2004.06.051

    Article  CAS  PubMed  Google Scholar 

  16. Koh HS, Yong T, Chan CK, Ramakrishna S (2008) Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials 29(26):3574–3582. https://doi.org/10.1016/j.biomaterials.2008.05.014

    Article  CAS  PubMed  Google Scholar 

  17. Ahmed I, Liu HY, Mamiya PC, Ponery AS, Babu AN, Weik T, Schindler M, Meiners S (2006) Three-dimensional nanofibrillar surfaces covalently modified with tenascin-C-derived peptides enhance neuronal growth in vitro. J Biomed Mater Res A 76a(4):851–860. https://doi.org/10.1002/jbm.a.30587

    Article  CAS  Google Scholar 

  18. College O (2013) Illustration from anatomy & physiology. https://commons.wikimedia.org/wiki/File:1319_Nerve_StructureN.jpg

  19. Kandel ER, Schwartz JH (1981) Principles of neural science. Elsevier, North Holland, New York

    Google Scholar 

  20. Brosius Lutz A, Barres BA (2014) Contrasting the glial response to axon injury in the central and peripheral nervous systems. Dev Cell 28(1):7–17. https://doi.org/10.1016/j.devcel.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  21. Lutz AB, Barres BA (2014) Contrasting the glial response to axon injury in the central and peripheral nervous systems. Dev Cell 28(1):7–17. https://doi.org/10.1016/j.devcel.2013.12.002

    Article  Google Scholar 

  22. Huebner EA, Strittmatter SM (2009) Axon regeneration in the peripheral and central nervous systems. Results Probl Cell Differ 48:339–351. https://doi.org/10.1007/400_2009_19

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dahlin LB, Lundborg G (2001) Use of tubes in peripheral nerve repair. Neurosurg Clin N Am 12(2):341

    CAS  PubMed  Google Scholar 

  24. Moore AM, Kasukurthi R, Magill CK, Farhadi HF, Borschel GH, Mackinnon SE (2009) Limitations of conduits in peripheral nerve repairs. Hand (N Y) 4(2):180–186. https://doi.org/10.1007/s11552-008-9158-3

    Article  Google Scholar 

  25. Ma TC, Willis DE (2015) What makes a RAG regeneration associated? Front Mol Neurosci 8:43. https://doi.org/10.3389/fnmol.2015.00043

    PubMed  PubMed Central  Google Scholar 

  26. David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous-system bridges after central nervous-system injury in adult-rats. Science 214(4523):931–933. https://doi.org/10.1126/science.6171034

    Article  CAS  PubMed  Google Scholar 

  27. Jankowski MP, McIlwrath SL, Jing X, Cornuet PK, Salerno KM, Koerber HR, Albers KM (2009) Sox11 transcription factor modulates peripheral nerve regeneration in adult mice. Brain Res 1256:43–54. https://doi.org/10.1016/j.brainres.2008.12.032

    Article  CAS  PubMed  Google Scholar 

  28. Seijffers R, Allchorne AJ, Woolf CJ (2006) The transcription factor ATF-3 promotes neurite outgrowth. Mol Cell Neurosci 32(1-2):143–154. https://doi.org/10.1016/j.mcn.2006.03.005

    Article  CAS  PubMed  Google Scholar 

  29. GrandPre T, Nakamura F, Vartanian T, Strittmatter SM (2000) Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403(6768):439–444

    Article  CAS  PubMed  Google Scholar 

  30. Bomze HM, Bulsara KR, Iskandar BJ, Caroni P, Skene JHP (2001) Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nat Neurosci 4(1):38–43

    Article  CAS  PubMed  Google Scholar 

  31. Bonilla IE, Tanabe K, Strittmatter SM (2002) Small proline-rich repeat protein 1A is expressed by axotomized neurons and promotes axonal outgrowth. J Neurosci 22(4):1303–1315

    CAS  PubMed  Google Scholar 

  32. Safa B, Buncke G (2016) Autograft substitutes: conduits and processed nerve allografts. Hand Clin 32(2):127–140. https://doi.org/10.1016/j.hcl.2015.12.012

    Article  PubMed  Google Scholar 

  33. Chen ZL, Yu WM, Strickland S (2007) Peripheral regeneration. Annu Rev Neurosci 30:209–233. https://doi.org/10.1146/annurev.neuro.30.051606.094337

    Article  PubMed  Google Scholar 

  34. Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10(6):2341–2353. https://doi.org/10.1016/j.actbio.2014.02.015

    Article  CAS  PubMed  Google Scholar 

  35. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S (2009) Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering. Tissue Eng A 15(11):3605–3619. https://doi.org/10.1089/ten.tea.2008.0689

    Article  CAS  Google Scholar 

  36. Oh SH, Kim JH, Song KS, Jeon BH, Yoon JH, Seo TB, Namgung U, Lee IW, Lee JH (2008) Peripheral nerve regeneration within an asymmetrically porous PLGA/Pluronic F127 nerve guide conduit. Biomaterials 29(11):1601–1609. https://doi.org/10.1016/j.biomaterials.2007.11.036

    Article  CAS  PubMed  Google Scholar 

  37. Assmann U, Szentivanyi A, Stark Y, Scheper T, Berski S, Drager G, Schuster RH (2010) Fiber scaffolds of polysialic acid via electrospinning for peripheral nerve regeneration. J Mater Sci Mater Med 21(7):2115–2124. https://doi.org/10.1007/s10856-010-4072-y

    Article  CAS  PubMed  Google Scholar 

  38. Dinis TM, Elia R, Vidal G, Dermigny Q, Denoeud C, Kaplan DL, Egles C, Marin F (2015) 3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration. J Mech Behav Biomed Mater 41:43–55. https://doi.org/10.1016/j.jmbbm.2014.09.029

    Article  CAS  PubMed  Google Scholar 

  39. Goh YF, Shakir I, Hussain R (2013) Electrospun fibers for tissue engineering, drug delivery, and wound dressing. J Mater Sci 48(8):3027–3054. https://doi.org/10.1007/s10853-013-7145-8

    Article  CAS  Google Scholar 

  40. Jenkins PM, Laughter MR, Lee DJ, Lee YM, Freed CR, Park D (2015) A nerve guidance conduit with topographical and biochemical cues: potential application using human neural stem cells. Nanoscale Res Lett 10(1):972. https://doi.org/10.1186/s11671-015-0972-6

    Article  PubMed  Google Scholar 

  41. Gattazzo F, Urciuolo A, Bonaldo P (2014) Extracellular matrix: a dynamic microenvironment for stem cell niche. BBA-Gen Subjects 1840(8):2506–2519. https://doi.org/10.1016/j.bbagen.2014.01.010

    Article  CAS  Google Scholar 

  42. Lutolf MP, Blau HM (2009) Artificial stem cell niches. Adv Mater 21(32–33):3255–3268. https://doi.org/10.1002/adma.200802582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim DH, Provenzano PP, Smith CL, Levchenko A (2012) Matrix nanotopography as a regulator of cell function. J Cell Biol 197(3):351–360. https://doi.org/10.1083/jcb.201108062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim MH, Sawada Y, Taya M, Kino-oka M (2014) Influence of surface topography on the human epithelial cell response to micropatterned substrates with convex and concave architectures. J Biol Eng 8:13. https://doi.org/10.1186/1754-1611-8-13

    Article  PubMed  PubMed Central  Google Scholar 

  45. Beachley V, Wen XJ (2010) Polymer nanofibrous structures: fabrication, biofunctionalization, and cell interactions. Prog Polym Sci 35(7):868–892. https://doi.org/10.1016/j.progpolymsci.2010.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hoffman-Kim D, Mitchel JA, Bellamkonda RV (2010) Topography, cell response, and nerve regeneration. Annu Rev Biomed Eng 12(12):203–231. https://doi.org/10.1146/annurev-bioeng-070909-105351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jha BS, Colello RJ, Bowman JR, Sell SA, Lee KD, Bigbee JW, Bowlin GL, Chow WN, Mathern BE, Simpson DG (2011) Two pole air gap electrospinning: fabrication of highly aligned, three-dimensional scaffolds for nerve reconstruction. Acta Biomater 7(1):203–215. https://doi.org/10.1016/j.actbio.2010.08.004

    Article  CAS  PubMed  Google Scholar 

  48. Gupta D, Venugopal J, Prabhakaran MP, Dev VR, Low S, Choon AT, Ramakrishna S (2009) Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomater 5(7):2560–2569. https://doi.org/10.1016/j.actbio.2009.01.039

    Article  CAS  PubMed  Google Scholar 

  49. Bhutto MA, Wu T, Sun B, Ei-Hamshary H, Al-Deyab SS, Mo X (2016) Fabrication and characterization of vitamin B5 loaded poly (l-lactide-co-caprolactone)/silk fiber aligned electrospun nanofibers for schwann cell proliferation. Colloids Surf B: Biointerfaces 144:108–117. https://doi.org/10.1016/j.colsurfb.2016.04.013

    Article  CAS  PubMed  Google Scholar 

  50. Sun B, Jiang XJ, Zhang SC, Zhang JC, Li YF, You QZ, Long YZ (2015) Electrospun anisotropic architectures and porous structures for tissue engineering. J Mater Chem B 3(27):5389–5410. https://doi.org/10.1039/c5tb00472a

    Article  CAS  Google Scholar 

  51. Rowan A (2006) Nerve regeneration - a strain on regeneration. Nat Rev Neurosci 7(8):596–597. https://doi.org/10.1038/nrn1972

    Article  CAS  Google Scholar 

  52. Tetzlaff W, Okon EB, Karimi-Abdolrezaee S, Hill CE, Sparling JS, Plemel JR, Plunet WT, Tsai EC, Baptiste D, Smithson LJ, Kawaja MD, Fehlings MG, Kwon BK (2011) A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotraum 28(8):1611–1682. https://doi.org/10.1089/neu.2009.1177

    Article  Google Scholar 

  53. Bryan DJ, Wang KK, ChakalisHaley DP (1996) Effect of Schwann cells in the enhancement of peripheral-nerve regeneration. J Reconstr Microsurg 12(7):439–446. https://doi.org/10.1055/s-2007-1006616

    Article  CAS  PubMed  Google Scholar 

  54. Williams LR, Longo FM, Powell HC, Lundborg G, Varon S (1983) Spatial-temporal progress of peripheral-nerve regeneration within a silicone chamber - parameters for a bioassay. J Comp Neurol 218(4):460–470. https://doi.org/10.1002/cne.902180409

    Article  CAS  PubMed  Google Scholar 

  55. Bunge RP (1994) The role of the Schwann-cell in trophic support and regeneration. J Neurol 242(1):S19–S21. https://doi.org/10.1007/Bf00939235

    Article  CAS  PubMed  Google Scholar 

  56. Jankowski MP, Cornuet PK, McILwrath S, Koerber HR, Albers KM (2006) SRY-box containing gene 11 (Sox11) transcription factor is required for neuron survival and neurite growth. Neuroscience 143(2):501–514. https://doi.org/10.1016/j.neuroscience.2006.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Barres BA, Raff MC (1999) Axonal control of oligodendrocyte development. J Cell Biol 147(6):1123–1128. https://doi.org/10.1083/jcb.147.6.1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Novikova LN, Pettersson J, Brohlin M, Wiberg M, Novikov LN (2008) Biodegradable poly-beta-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair. Biomaterials 29(9):1198–1206. https://doi.org/10.1016/j.biomaterials.2007.11.033

    Article  CAS  PubMed  Google Scholar 

  59. Xu XM, Zhang SX, Li HY, Aebischer P, Bunge MB (1999) Regrowth of axons into the distal spinal cord through a Schwann-cell-seeded mini-channel implanted into hemisected adult rat spinal cord. Eur J Neurosci 11(5):1723–1740. https://doi.org/10.1046/j.1460-9568.1999.00591.x

    Article  CAS  PubMed  Google Scholar 

  60. Blitts B, Oudega M, Boer GJ, Bunge MB, Verhaagen J (2003) Adeno-associated viral vector-mediated neurotrophin gene transfer in the injured adult rat spinal cord improves hind-limb function. Neuroscience 118(1):271–281. https://doi.org/10.1016/S0306-4522(02)00970-3

    Article  Google Scholar 

  61. Keeley R, Atagi T, Sabelman E, Padilla J, Kadlcik P, Agras J, Eng L, Wiedman TW, Nguyen K, Sudekum A, Rosen J (1994) Synthetic nerve graft containing collagen and synthetic Schwann-cells improves functional, electrophysiological, and histological parameters of peripheral-nerve regeneration (Vol 5, Pg 353, 1993). Restor Neurol Neurosci 6(2):161

    Google Scholar 

  62. Lohmeyer JA, Shen ZL, Walter GF, Berger A (2007) Bridging extended nerve defects with an artificial nerve graft containing Schwann cells pre-seeded on polyglactin filaments. Int J Artif Organs 30(1):64–74

    CAS  PubMed  Google Scholar 

  63. Nie X, Zhang YJ, Tian WD, Jiang M, Dong R, Chen JW, Jin Y (2007) Improvement of peripheral nerve regeneration by a tissue-engineered nerve filled with ectomesenchymal stem cells. Int J Oral Maxillofac Surg 36(1):32–38. https://doi.org/10.1016/j.ijom.2006.06.005

    Article  CAS  PubMed  Google Scholar 

  64. Clarke DL, Johansson CB, Wilbertz J, Veress B, Nilsson E, Karlstrom H, Lendahl U, Frisen J (2000) Generalized potential of adult neural stem cells. Science 288(5471):1660–1663

    Article  CAS  PubMed  Google Scholar 

  65. Temple S (1989) Division and differentiation of isolated CNS blast cells in microculture. Nature 340(6233):471–473. https://doi.org/10.1038/340471a0

    Article  CAS  PubMed  Google Scholar 

  66. Heine W, Conant K, Griffin JW, Hoke A (2004) Transplanted neural stem cells promote axonal regeneration through chronically denervated peripheral nerves. Exp Neurol 189(2):231–240. https://doi.org/10.1016/j.expneurol.2004.06.014

    Article  CAS  PubMed  Google Scholar 

  67. Olson HE, Rooney GE, Gross L, Nesbitt JJ, Galvin KE, Knight A, Chen B, Yaszemski MJ, Windebank AJ (2009) Neural stem cell- and Schwann cell-loaded biodegradable polymer scaffolds support axonal regeneration in the transected spinal cord. Tissue Eng A 15(7):1797–1805. https://doi.org/10.1089/ten.tea.2008.0364

    Article  CAS  Google Scholar 

  68. Lee SH, Chung YN, Kim YH, Kim YJ, Park JP, Kwon DK, Kwon OS, Heo JH, Kim YH, Ryu S, Kang HJ, Paek SH, Wang KC, Kim SU, Yoon BW (2009) Effects of human neural stem cell transplantation in canine spinal cord hemisection. Neurol Res 31(9):996–1002. https://doi.org/10.1179/174313209x385626

    Article  PubMed  Google Scholar 

  69. Zahir T, Nomura H, Guo XD, Kim H, Tator C, Morshead C, Shoichet M (2008) Bioengineering neural stem/progenitor cell-coated tubes for spinal cord injury repair. Cell Transplant 17(3):245–254

    Article  PubMed  Google Scholar 

  70. Nie X, Zhang YJ, Tian WD, Jiang M, Dong R, Chen JW, Jin Y (2007) Improvement of peripheral nerve regeneration by a tissue-engineered nerve filled with ectomesenchymal stem cells. Int J Oral Max Surg 36(1):32–38. https://doi.org/10.1016/j.ijom.2006.06.005

    Article  CAS  Google Scholar 

  71. Pal R, Gopinath C, Rao NM, Banerjee P, Krishnamoorthy V, Venkataramana NK, Totey S (2010) Functional recovery after transplantation of bone marrow-derived human mesenchymal stromal cells in a rat model of spinal cord injury. Cytotherapy 12(6):792–806. https://doi.org/10.3109/14653249.2010.487899

    Article  PubMed  Google Scholar 

  72. Lopes FRP, Campos LCD, Correa JD, Balduino A, Lora S, Langone F, Borojevic R, Martinez AMB (2006) Bone marrow stromal cells and resorbable collagen guidance tubes enhance sciatic nerve regeneration in mice. Exp Neurol 198(2):457–468. https://doi.org/10.1016/j.expneurol.2005.12.019

    Article  CAS  Google Scholar 

  73. Su ZD, He C (2010) Olfactory ensheathing cells: biology in neural development and regeneration. Prog Neurobiol 92(4):517–532. https://doi.org/10.1016/j.pneurobio.2010.08.008

    Article  PubMed  Google Scholar 

  74. http://www.livemint.com/Politics/L800Xj31ulYJVBUaDrwaiL/Paralysed-man-walks-again-after-breakthrough-treatment.html (2014)

  75. Hempstead BL (2006) Dissecting the diverse actions of pro- and mature neurotrophins. Curr Alzheimer Res 3(1):19–24

    Article  CAS  PubMed  Google Scholar 

  76. Fan J, Zhang H, He J, Xiao Z, Chen B, Xiaodan J, Dai J, Xu R (2011) Neural regrowth induced by PLGA nerve conduits and neurotrophin-3 in rats with complete spinal cord transection. J Biomed Mater Res B Appl Biomater 97(2):271–277. https://doi.org/10.1002/jbm.b.31810

    Article  PubMed  Google Scholar 

  77. Joosten EA, Houweling DA (2004) Local acute application of BDNF in the lesioned spinal cord anti-inflammatory and anti-oxidant effects. Neuroreport 15(7):1163–1166

    Article  CAS  PubMed  Google Scholar 

  78. Liang W, Han Q, Jin W, Xiao Z, Huang J, Ni H, Chen B, Kong J, Wu J, Dai J (2010) The promotion of neurological recovery in the rat spinal cord crushed injury model by collagen-binding BDNF. Biomaterials 31(33):8634–8641. https://doi.org/10.1016/j.biomaterials.2010.07.084

    Article  CAS  PubMed  Google Scholar 

  79. Cheng H, Cao Y, Olson L (1996) Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function. Science 273(5274):510–513

    Article  CAS  PubMed  Google Scholar 

  80. De Laporte L, des Rieux A, Tuinstra HM, Zelivyanskaya ML, De Clerck NM, Postnov AA, Preat V, Shea LD (2011) Vascular endothelial growth factor and fibroblast growth factor 2 delivery from spinal cord bridges to enhance angiogenesis following injury. J Biomed Mater Res A 98(3):372–382. https://doi.org/10.1002/jbm.a.33112

    Article  PubMed  PubMed Central  Google Scholar 

  81. Widenfalk J, Lipson A, Jubran M, Hofstetter C, Ebendal T, Cao Y, Olson L (2003) Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury. Neuroscience 120(4):951–960

    Article  CAS  PubMed  Google Scholar 

  82. Sundberg LM, Herrera JJ, Narayana PA (2011) Effect of vascular endothelial growth factor treatment in experimental traumatic spinal cord injury: in vivo longitudinal assessment. J Neurotrauma 28(4):565–578. https://doi.org/10.1089/neu.2010.1533

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kim MS, El-Fiqi A, Kim JW, Ahn HS, Kim H, Son YJ, Kim HW, Hyun JK (2016) Nanotherapeutics of PTEN inhibitor with mesoporous silica nanocarrier effective for axonal outgrowth of adult neurons. ACS Appl Mater Inter 8(29):18741–18753. https://doi.org/10.1021/acsami.6b06889

    Article  CAS  Google Scholar 

  84. Sun BB, Taing A, Liu HY, Nie GC, Wang JY, Fang YL, Liu L, Xue Y, Shi J, Liao YP, Ku J, Xia T, Liu Y (2016) Nerve growth factor-conjugated mesoporous silica nanoparticles promote neuron-like PC12 cell proliferation and neurite growth. J Nanosci Nanotechnol 16(3):2390–2393. https://doi.org/10.1166/jnn.2016.10958

    Article  CAS  PubMed  Google Scholar 

  85. Shah S, Solanki A, Lee KB (2016) Nanotechnology-based approaches for guiding neural regeneration. Acc Chem Res 49(1):17–26. https://doi.org/10.1021/acs.accounts.5b00345

    Article  CAS  PubMed  Google Scholar 

  86. Fabbro A, Prato M, Ballerini L (2013) Carbon nanotubes in neuroregeneration and repair. Adv Drug Deliver Rev 65(15):2034–2044. https://doi.org/10.1016/j.addr.2013.07.002

    Article  CAS  Google Scholar 

  87. Gilmore JL, Yi X, Quan L, Kabanov AV (2008) Novel nanomaterials for clinical neuroscience. J Neuroimmune Pharm 3(2):83–94. https://doi.org/10.1007/s11481-007-9099-6

    Article  Google Scholar 

  88. Yong J, Needham K, Brown WGA, Nayagam BA, McArthur SL, Yu AM, Stoddart PR (2014) Gold-nanorod-assisted near-infrared stimulation of primary auditory neurons. Adv Healthc Mater 3(11):1862–1868. https://doi.org/10.1002/adhm.201400027

    Article  CAS  PubMed  Google Scholar 

  89. Yang J, Fan LX, Wang FJ, Luo Y, Sui X, Li WH, Zhang XH, Wang YG (2016) Rapid-releasing of HI-6 via brain-targeted mesoporous silica nanoparticles for nerve agent detoxification. Nanoscale 8(18):9537–9547. https://doi.org/10.1039/c5nr06658a

    Article  CAS  PubMed  Google Scholar 

  90. Zelikin AN, Lynn DM, Farhadi J, Martin I, Shastri V, Langer R (2002) Erodible conducting polymers for potential biomedical applications. Angew Chem Int Ed 41(1):141–144. https://doi.org/10.1002/1521-3773(20020104)41:1<141::Aid-Anie141>3.0.Co;2-V

    Article  CAS  Google Scholar 

  91. Sun BB, Wu T, Wang J, Li DW, Wang J, Gao Q, Bhutto MA, El-Hamshary H, Al-Deyab SS, Mo XM (2016) Polypyrrole-coated poly(L-lactic acid-co-epsilon-caprolactone)/silk fibroin nanofibrous membranes promoting neural cell proliferation and differentiation with electrical stimulation. J Mater Chem B 4(41):6670–6679. https://doi.org/10.1039/c6tb01710j

    Article  CAS  Google Scholar 

  92. Yan L, Zhao BX, Liu XH, Li X, Zeng C, Shi HY, Xu XX, Lin T, Dai LM, Liu Y (2016) Aligned nanofibers from polypyrrole/graphene as electrodes for regeneration of optic nerve via electrical stimulation. ACS Appl Mater Inter 8(11):6834–6840. https://doi.org/10.1021/acsami.5b12843

    Article  CAS  Google Scholar 

  93. Schmidt CE, Shastri VR, Vacanti JP, Langer R (1997) Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci U S A 94(17):8948–8953. https://doi.org/10.1073/pnas.94.17.8948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee JY, Bashur CA, Goldstein AS, Schmidt CE (2009) Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30(26):4325–4335. https://doi.org/10.1016/j.biomaterials.2009.04.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol Sang Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, J.I., Hwang, T.I., Lee, J., Park, C.H., Kim, C.S. (2017). Electrospun Nanofibrous Nerve Conduits. In: Almodovar, J. (eds) Electrospun Biomaterials and Related Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-70049-6_7

Download citation

Publish with us

Policies and ethics