Skip to main content

Numerical Study of 3D Turbulent Cavitating Flows

  • 1462 Accesses

Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM,volume 137)

Abstract

A numerical investigation of the behaviour of a 3D cavitation sheet developing along a Venturi geometry has been performed using both a compressible one-fluid RANS solver and a pressure-based solver. The interplay between turbulence and cavitation regarding the unsteadiness and the structure of the flow is complex and not well understood. This constitutes a determinant point to accurately simulate the dynamic of sheet cavities. The mass transfer between phases is driven by a void ratio transport equation model. Turbulence is taken into account using Scale-Adaptive models (SAS). 3D simulations are compared with the experimental data.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-70031-1_38
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   199.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-70031-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   259.00
Price excludes VAT (USA)
Hardcover Book
USD   259.00
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    http://openfoam.org/.

References

  1. Barre, S., Rolland, J., Boitel, G., Goncalves, E., Patella, R.F.: Experiments and modelling of cavitating flows in Venturi: attached sheet cavitation. Eur. J. of Mech. B/Fluids 28, 444–464 (2009)

    Google Scholar 

  2. Charriere, B., Decaix, J., Goncalves, E.: A comparative study of cavitation models in a venturi flow. Eur. J. Mech. B/Fluids 49, 287–297 (2015)

    Google Scholar 

  3. Decaix, J., Goncalves, E.: Time-dependent simulation of cavitating flow with \(k-\ell \) turbulence models. Int. J. Numer. Methods Fluids 68, 1053–1072 (2012)

    Google Scholar 

  4. Decaix, J., Goncalves, E.: Investigation of three-dimensional effects on a cavitating venturi flow. Int. J. Heat Fluid Flow 44, 576–595 (2013)

    Google Scholar 

  5. Dittakavi, N., Chunekar, A., Frankel, S.: Large eddy simulation of turbulent-cavitation interactions in a Venturi nozzle. J. Fluids Eng. 132(12), 121,301 (2010)

    Google Scholar 

  6. Foeth, E., van Doorne, C., van Terwisga, T., Wienecke, B.: Time-resolved PIV and flow visualization of 3D sheet cavitation. Exp. Fluids 40, 503–513 (2006)

    Google Scholar 

  7. Goncalves, E.: Numerical study of expansion tube problems: toward the simulation of cavitation. Comput. Fluids 72, 1–19 (2013)

    Google Scholar 

  8. Goncalves, E., Charriere, B.: Modelling for isothermal cavitation with a four-equation model. Int. J. Multiph. Flow 59, 54–72 (2014)

    Google Scholar 

  9. Haase, W., Braza, M., Revell, A.: I The DESider Project, pp. 1–18. Springer, Berlin, Heidelberg (2009)

    Google Scholar 

  10. Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes. In: AIAA Paper, pp. 81–1259 (1981)

    Google Scholar 

  11. Ji, B., Luo, X., Peng, X., Xu, H.: Partially-averaged Navier-Stokes method with modified \(k-\varepsilon \) model for cavitating flow around a marine propeller in a non-uniform wake. Int. J. Heat Mass Transf. 55, 6582–6588 (2012)

    Google Scholar 

  12. Kinzel, M., Lindau, J., Peltier, L., Kunz, R., Venkateswaran, S.: Detached-eddy simulations for cavitating flows. In: 18th AIAA Conference on AIAA, Miami, USA, p. 4098 (2007)

    Google Scholar 

  13. Kunz, R., Boger, D., Stinebring, D., Chyczewski, T., Lindau, J., Gibeling, H., Venkateswaran, S., Govindan, T.: A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction. Comput. Fluids 29(8), 849–875 (2000)

    Google Scholar 

  14. de Lange, D., de Bruin, G.: Sheet cavitation and cloud cavitation, re-entrant jet and three-dimensionality. Appl. Sci. Res. 91–114 (1998)

    Google Scholar 

  15. Menter, F., Egorov, Y.: A scale-adaptive simulation model using two-equation models. In: AIAA 2005–1095, 43rd Aerospace Science Meeting and Exhibit, Reno, Nevada (2006)

    Google Scholar 

  16. Roe, P.: Approximate Riemann solvers, parameters vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Google Scholar 

  17. Schnerr, G., Sezal, I., Schmidt, S.: Numerical investigation of 3-D cloud cavitation with special emphasis on collapse induced shock dynamics. Phys. Fluids 20, 040,703 (2008)

    Google Scholar 

  18. Smith, B.: A near wall model for the \(k-l\) two equation turbulence model. In: AIAA 94–2386, 25sh Fluid Dynamics Conference—Colorado Springs, Colorado (1994)

    Google Scholar 

  19. Wang, G., Ostoja-Starzewski, M.: Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil. Appl. Math. Model. 31, 417–447 (2007)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Direction Generale de l’Armement (DGA) for supporting the current work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Goncalves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Goncalves, E., Decaix, J., Charriere, B. (2018). Numerical Study of 3D Turbulent Cavitating Flows. In: Hoarau, Y., Peng, SH., Schwamborn, D., Revell, A. (eds) Progress in Hybrid RANS-LES Modelling. HRLM 2016. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 137. Springer, Cham. https://doi.org/10.1007/978-3-319-70031-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70031-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70030-4

  • Online ISBN: 978-3-319-70031-1

  • eBook Packages: EngineeringEngineering (R0)