Skip to main content

Metals: Occurrence, Treatment Efficiency and Accumulation Under Varying Flows

  • Chapter
  • First Online:
Ecotechnologies for the Treatment of Variable Stormwater and Wastewater Flows

Abstract

Metals were the first priority pollutants to be widely investigated in stormwater. In solid phase, they are often attached to very fine particles. The dissolved fraction creates considerable environmental problems as it is the most bioavailable fraction. Hence, removal of both fine and dissolved particles plays a major role in the treatment of polluted runoff. Ecotechnologies specifically designed to remove metals should be able to address different treatment mechanisms. However, the exhaustion of sorption capacity reduces the lifespan of treatment facilities. Additionally, metal concentrations fluctuate extremely—spatially, seasonally and over time—which poses another challenge for further increasing removal efficiencies. While soil- or sand-based systems should be designed in a way that the filter material can be exchanged, newer developments such as Floating Treatment Wetlands show promising removal capacities as the installations bind metals in sludge sediments, which can be removed from time to time. The different treatment mechanisms, aforementioned developments and techniques as well as their removal capacities will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alloway BJ (1995) Heavy metals in soils. Blackie Academic and Professional, London, UK

    Book  Google Scholar 

  • Al-Rubaei AM, Engström M, Viklander M, Blecken GT (2016) Long-term hydraulic and treatment performance of a 19-year old constructed stormwater wetland finally maturated or in need of maintenance? Ecol Eng 95:73–82

    Article  Google Scholar 

  • Al-Rubaei AM, Merriman LS, Hunt WF, Viklander M, Marsalek J, Blecken GT (2017) Survey of the operational status of 25 Swedish municipal stormwater management ponds. J Environ Eng-ASCE 143(6):05017001

    Google Scholar 

  • Ayrault S, Le Pape P, Evrard O, Priadi CR, Quantin C, Bonté P, Roy-Barman M (2014) Remanence of lead pollution in an urban river system: a multi-scale temporal and spatial study in the Seine River basin, France. Environ Sci Pollut Res 21:4134–4148

    Article  CAS  Google Scholar 

  • Bäckström M, Viklander M, Malmqvist PA (2006) Transport of stormwater pollutants through a roadside grassed swale. Urban Water J 3(2):55–67

    Article  Google Scholar 

  • Birch GF, Matthai C, Fazeli MS, Suh J (2004) Efficiency of a constructed wetland in removing contaminants from stormwater. Wetlands 24(2):459–466

    Article  Google Scholar 

  • Blecken GT, Zinger Y, Deletic A, Fletcher TD, Viklander M (2009) Influence of intermittent wetting and drying conditions on heavy metal removal by stormwater biofilters. Water Res 43:4590–4598

    Article  CAS  Google Scholar 

  • Blecken GT, Marsalek J, Viklander M (2011) Laboratory study on stormwater biofiltration in cold temperatures: metal removal and fates. Water Air Soil Poll 219:303–317

    Article  CAS  Google Scholar 

  • Boogaard FC, van de Ven F, Langeveld JG, van de Giesen N (2014) Stormwater quality characteristics in (Dutch) urban areas and performance of settlement basins. Challenges 5:112–122

    Article  Google Scholar 

  • Borne KE, Fassman EA, Tanner CC (2013) Floating treatment wetland retrofit to improve stormwater pond performance for suspended solids, copper and zinc. Ecol Eng 54:173–182

    Article  Google Scholar 

  • Borne K, Fassman-Beck E, Tanner C (2014) Floating treatment wetland influences on the fate of metals in road runoff retention ponds. Water Res 48:430–442

    Article  CAS  Google Scholar 

  • Borris M, Österlund H, Marsalek J, Viklander M (2016) Contribution of coarse particles from road surfaces to dissolved and particle-bound heavy metal loads in runoff: a laboratory leaching study with synthetic stormwater. Sci Total Environ 573:212–221

    Article  CAS  Google Scholar 

  • Bradl HB (2004) Adsorption of heavy metal ions on soil and soil constituents. J Colloid Interface Sci 277:1–18

    Article  CAS  Google Scholar 

  • Bratieres K, Fletcher TD, Deletic A, Zinger Y (2008) Nutrient and sediment removal by stormwater biofilters: A large-scale design optimisation study. Water Res 42(14):3930–3940

    Google Scholar 

  • Bulc T, Slak AS (2003) Performance of constructed wetland for highway runoff treatment. Water Sci Technol 48(2):315–322

    CAS  Google Scholar 

  • Campbell PCG (1995) Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier A, Turner DR (ed) Metal speciation and bioavailability in aquatic systems, vol 3. Wiley, Chichester, UK

    Google Scholar 

  • Camponelli KM, Lev SM, Snodgrass JW, Landa ER, Case RE (2010) Chemical fractionation of Cu and Zn in stormwater, roadway dust and stormwater pond sediments. Environl Poll 158(6):2143–2149

    Article  CAS  Google Scholar 

  • Carleton JN, Grizzard TJ, Godrej AN, Post HE (2001) Factors affecting the performance of stormwater treatment wetlands. Water Res 35(6):1552–1562

    Article  CAS  Google Scholar 

  • Chapman C, Horner RR (2010) Performance assessment of a street-drainage bioretention system. Water Environ Res 82:109–119

    Article  CAS  Google Scholar 

  • Czemiel Berndtsson J (2014) Storm water quality of first flush urban runoff in relation to different traffic characteristics. Urban Water 11(4):284–296

    Article  Google Scholar 

  • Davis AP (2007) Field performance of bioretention: water quality. Environ Eng Sci 24(8):1048–1064

    Article  CAS  Google Scholar 

  • Davis AP, Shokouhian M, Sharma H, Minami C (2001) Laboratory study of biological retention for urban stormwater management. Water Environ Res 73:5–14

    Article  CAS  Google Scholar 

  • Davis AP, Hunt WF, Traver RG, Clar M (2009) Bioretention technology: overview of current practice and future needs. J Environ Eng 135:109–117

    Article  CAS  Google Scholar 

  • Denich C, Bradford A, Drake J (2013) Bioretention: assessing effects of winter salt and aggregate application on plant health, media clogging and effluent quality. Water Qual Res J Canada 48:387–399

    Google Scholar 

  • Dierkes C (1999) Verhalten von Schwermetallen im Regenabfluss von Verkehrsflächen bei der Versickerung über poröse Deckbelege. Forum Siedlungswasserwirtschaft und Abfallwirtschaft, Universität GH Essen, vol 14. Essen, Germany (in German)

    Google Scholar 

  • Dietz ME, Clausen JC (2006) Saturation to improve pollutant retention in a rain garden. Environ Sci Technol 40:1335–1340

    Article  CAS  Google Scholar 

  • Eriksson E, Baun A, Scholes L, Ledin A, Ahlman S, Revitt M, Noutsopoulos C, Mikkelsen PS (2007) Selected stormwater priority pollutants—an European perspective. Sci Total Environ 383(1):41–51

    Article  CAS  Google Scholar 

  • Färm C (2003) Rening av dagvatten genom filtrering och sedimentation (Stormwater treatment by filtration and sedimentation). Svenskt Vatten, Rapport 2003–16, Swedish Water and Wastewater Association, Stockholm, Sweden

    Google Scholar 

  • Fassman EA, Simcock R, Wang S (2013) Media specification for stormwater bioretention devices. Technical Report 2013/011 Auckland City Coucil, Auckland, New Zealand

    Google Scholar 

  • Fritioff Å, Kautsky L, Greger M (2004) Influence of temperature and salinity on hevay metal uptake by submersed plants. Environ Pollut 133:265–274

    Article  Google Scholar 

  • Gasperi J, Sebastian C, Ruban V, Delamain M, Percot S, Wiest L, Mirande C, Caupos E, Demare D, Kessoo MDK, Saad M, Schwartz JJ, Dubois P, Fratta C, Wolff H, Moilleron R, Chebbo G, Cren C, Millet M, Barraud S, Gromaire MC (2014) Micropollutants in urban stormwater: occurrence, concentrations, and atmospheric contributions for a wide range of contaminants in three French catchments. Environ Sci Pollut Res 21:5267–5281

    Google Scholar 

  • German J, Svensson G, Gustafsson LG, Vikström M (2003) Modelling of temperature effects on removal efficiency and dissolved oxygen concentrations in stormwater ponds. Wat Sci Technol 48(9):145–154

    CAS  Google Scholar 

  • Glass C, Bissouma S (2005) Evaluation of a parking lot bioretention cell for removal of stormwater pollutants. Ecosystems and Sustainable Development V Book Series: WIT Trans Ecol Environ 81:699–708

    Google Scholar 

  • Göbel P, Dierkes C, Coldewey W (2007) Storm water runoff concentration matrix for urban areas. J Contam Hydrol 91(1):26–42

    Article  Google Scholar 

  • Grotehusmann D, Lambert B, Fuchs S, Uhl M, Leutnant D (2017) Erhebungsuntersuchung zur Optimierung der Retentionsbodenfilter in NRW. (Investigation to optimize retention soil filters in NRW). Final report, Ministry for Environment, Nature Conservation, Agriculture and Consumer Protection of the German Federal State of North 289 Rhine-Westphalia (Ed.), Düsseldorf. https://www.lanuv.nrw.de/uploads/tx_mmkresearchprojects/Abschlussbericht_RBF_NRW.pdf (in German)

  • Hatt BE, Siriwardene N, Deletic A, Fletcher TD (2006) Filter media for stormwater treatment and recycling: the influence of hydraulic properties of flow on pollutant removal. Water Sci Technol 54(6–7):263–271

    Article  CAS  Google Scholar 

  • Hatt BE, Deletic A, Fletcher TD (2007a) Stormwater reuse: designing biofiltration systems for reliable treatment. Water Sci Technol 55:201–209

    Article  CAS  Google Scholar 

  • Hatt BE, Deletic A, Fletcher TD (2007b) Hydraulic and pollutant removal performance of stormwater filters under variable wetting and drying regimes. Water Sci Technol 56:11–19

    Article  CAS  Google Scholar 

  • Hatt BE, Fletcher TD, Deletic A (2008) Hydraulic and pollutant removal performance of fine media stormwater filtration systems. Environ Sci Technol 42:2535–2541

    Article  CAS  Google Scholar 

  • Hatt BE, Fletcher TD, Deletic A (2009) Hydrologic and pollutant removal performance of biofiltration systems at field scale. J Hydrol 365:310–321

    Article  CAS  Google Scholar 

  • Helmreich B, Hilliges R, Schriewer A, Horn H (2010) Runoff pollutants of a highly trafficked urban road—correlation analysis and seasonal influences. Chemosphere 80:991–997

    Article  CAS  Google Scholar 

  • Hsieh CH, Davis AP (2005) Evaluation and optimization of bioretention media for treatment of urban storm water runoff. J Environ Eng 131:1521–1531

    Article  CAS  Google Scholar 

  • Hunt WF, Smith JT, Jadlocki SJ, Hathaway JM, Eubanks PR (2008) Pollutant removal and peak flow mitigation by a bioretention cell in urban Charlotte, NC. J Environ Eng 134(5):403–408

    Article  CAS  Google Scholar 

  • Hvitved-Jacobsen T, Vollertsen J, Haaning Nielsen A (2010) Urban and highway stormwater pollution: concepts and engineering. ISBN 9781439826850, CRC Press, Taylor & Francis Group

    Google Scholar 

  • Ingri J (2012) Introduktion i miljögeokemi (Introduction in environmental chemistry). Studentlitteratur AB, Lund, Sweden

    Google Scholar 

  • Isteniç D, Arias CA, Vollertsen J, Nielsen AH, Wium-Andersen T, Hvitved-Jacobsen T, Brix H (2012) Improved urban stormwater treatment and pollutant removal pathways in amended wet detention ponds. J Environ Sci Health—Part A: Tocix/Hazard Subst Environ Eng 47(10):1466–1477

    Google Scholar 

  • Karlsson K, Blecken GT, Öhlander B, Viklander M (2016) Environmental risk assessment of sediments deposited in stormwater treatment facilities: trace metal fractionation and its implication for sediment management. J Environ Eng 142(11):04016057

    Article  Google Scholar 

  • Karlsson K, Viklander M, Scholes L, Revitt M (2010) Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks. J Hazard Mater 178(1–3):612–618

    Article  CAS  Google Scholar 

  • Kayhanian M, Fruchtman BD, Gulliver JS, Montanaro C, Ranieri E, Wuertz S (2012) Review of highway runoff characteristics: comparative analysis and universal implications. Water Res 46:6609–6624

    Article  CAS  Google Scholar 

  • Knight EMP, Hunt WF, Winston RJ (2013) Side-by-side evaluation of four level spreader-vegetated filter strips and a swale in eastern North Carolina. J Soil Water Conserv 68(1):60–72

    Article  Google Scholar 

  • Ladislas S, Gérente C, Chazarenc F, Brisson J, Andrès Y (2013) Performances of two macrophytes species in floating treatment wetlands for cadmium, nickel, and zinc removal from urban stormwater runoff. Water Air Soil Pollut 224(2):1408

    Article  Google Scholar 

  • Ladislas S, Gérente C, Chazarenc F, Brisson J, Andrès Y (2015) Floating treatment wetlands for heavy metal removal in highway stormwater ponds. Ecol Eng 80:85–91

    Article  Google Scholar 

  • Le Coustumer S, Fletcher TD, Deletic A, Barraud S (2007) Hydraulic performance of biofilters for stormwater management: first lessons from both laboratory and field studies. Water Sci Technol 56:93–100

    Google Scholar 

  • Lee PK, Touray JC, Baillif P, Ildefonse JP (1997) Heavy metal contamination of settling particles in a retention pond along the A-71 motorway in Sologne, France. Sci Total Environ 201(1):1–15

    Article  CAS  Google Scholar 

  • Li H, Davis AP (2009) Water quality improvement through reductions of pollutant loads using bioretention. J Environ Eng-ASCE 135(8):567–576

    Article  CAS  Google Scholar 

  • Liebens J (2002) Heavy metal contamination of sediments in stormwater management systems: the effect of land use, particle size, and age. Environ Geol 41(3–4):341–351

    Google Scholar 

  • Li H, Davis AP (2008) Urban particle capture in bioretention media I: laboratory and field studies. J Environ Eng 134:409–418

    Article  CAS  Google Scholar 

  • Li YL, Deletic A, Alcazar L, Bratieres K, Fletcher TD, McCarthy DT (2012) Removal of Clostridium perfringens, Escherichia coli and F-RNA coliphages by stormwater biofilters. Ecol Eng 49:137–145

    Article  Google Scholar 

  • Li YL, McCarthy DT, Deletic A (2014) Stable copper-zeolite filter media for bacteria removal in stormwater. J Hazard Mat 273:222–230

    Article  CAS  Google Scholar 

  • Marsalek J, Marsalek PM (1997) Characteristics of sediments from a stormwater management pond. Water Sci Technol 36(8–9):117–122

    CAS  Google Scholar 

  • Marsalek PM, Watt WE, Marsalek J, Anderson BC (2003) Winter operation of an on-stream stormwater management pond. Water Sci Technol 48(9):133–143

    CAS  Google Scholar 

  • McNett JK, Hunt WF (2011) An evaluation of the toxicity of accumulated sediments in forebays of stormwater wetlands and wetponds. Water Air Soil Pollut 218(1–4):529–538

    Article  CAS  Google Scholar 

  • Muthanna TM, Viklander M, Blecken GT, Thorolfsson ST (2007a) Snowmelt pollutant removal in bioretention areas. Water Res 41:4061–4072

    Article  CAS  Google Scholar 

  • Muthanna TM, Viklander M, Gjesdahl N, Thorolfsson ST (2007b) Heavy metal removal in cold climate bioretention. Water Air Soil Pollut 183:391–402

    Article  CAS  Google Scholar 

  • Oberts GL (2003) Cold climate BMPs: solving the management puzzle. Water Sci Technol 48(9):21–32

    CAS  Google Scholar 

  • Pettersson TJR (1998) Water quality improvement in a small stormwater detention pond. Water Sci Technol 38(10):115–122

    Google Scholar 

  • Pitt R, Field R, Lalor M, Brown M (1995) Urban stormwater toxic pollutants: assessment sources, and treatability. Water Environ Res 67(3):260–275

    Article  CAS  Google Scholar 

  • Raclavska H, Drozdova J, Skrobankova H, Raclavsky K (2015) Behavior of Metals in a Combined Wastewater Collection System in Ostrava, Czech Republic. Water Environ Res 87(2):123–131

    Google Scholar 

  • Read J, Wevill T, Fletcher TD, Deletic A (2008) Variation among plant species in pollutant removal from stormwater in biofiltration systems. Water Res 42:893–902

    Article  CAS  Google Scholar 

  • Roseen RM, Ballestero TP, Houle JJ, Avellaneda P, Briggs J, Fowler G, Wildey R (2009) Seasonal performance variations for storm-water management systems in cold climate conditions. J Environ Eng 135(3):128–137

    Article  CAS  Google Scholar 

  • Sansalone JJ, Buchberger SG (1997) Characterization of solid and metal element distribution in urban highway stormwater. Water Sci Technol 36(8–9):155–160

    CAS  Google Scholar 

  • Semadeni-Davies A (2006) Winter performance of an urban stormwater pond in southern Sweden. Hydrol Processes 20:165–182

    Article  CAS  Google Scholar 

  • Søberg LC (2014) Metal pathways in stormwater treatment systems. Licentiate thesis, Luleå University of Technology

    Google Scholar 

  • Søberg LC, Blecken GT, Viklander M, Hedström A (2014a) Metal uptake in three different plant species used for cold climate biofilter systems. In: Proceedings of the 13th International Conference on Urban Drainage, Kuching, Sarawak, Malaysia

    Google Scholar 

  • Søberg LC, Viklander M, Blecken GT (2014b) The influence of temperature and salt on metal and sediment removal in stormwater biofilters. Water Sci Technol 69:2295–2304

    Google Scholar 

  • Søberg L, Viklander M, Blecken GT (2017) Do salt and low temperature impair metal treatment in stormwater bioretention cells with or without a submerged zone? Sci Total Environ 579:1588–1599

    Article  Google Scholar 

  • Stagge JH, Davis AP, Jamil E, Kim H (2012) Performance of grass swales for improving water quality from highway runoff. Water Res 46(20):6731–6742

    Article  CAS  Google Scholar 

  • Stanley DW (1996) Pollutant removal by a stormwater dry detention pond. Water Environ Res 68(6):1076–1083

    Article  CAS  Google Scholar 

  • Sun X, Davis AP (2007) Heavy metal fates in laboratory bioretention systems. Chemosphere 66:1601–1609

    Article  CAS  Google Scholar 

  • Terzakis S, Fountoulakis MS, Georgaki I, Albantakis D, Sabathianakis I, Karathanasis AD, Kalogerakis N, Manios T (2008) Constructed wetlands treating highway runoff in the central Mediterranean region. Chemosphere 72(2):141–149

    Article  CAS  Google Scholar 

  • Valtanen M, Sillanpaa N, Setala H (2014) The effects of urbanization on runoff pollutant concentrations, Loadings and their seasonal patterns under cold climate. Water Air Poll 225(6):1977

    Google Scholar 

  • Vijayaraghavan K, Joshi UM, Balasubramanian R (2010) Removal of metal ions from storm-water runoff by low-cost sorbents: batch and column studies. J Environ Eng-ASCE 136:1113–1118

    Article  CAS  Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30(5):685–700

    Article  CAS  Google Scholar 

  • Westerlund C, Viklander M, Bäckström M (2003) Seasonal variations in road runoff quality in Luleå, Sweden. Water Sci Technol 48(9):93–101

    CAS  Google Scholar 

  • Wilber WG, Hunter JV (1975) Contributions of metals resulting from stormwater runoff and precipitation in Lodi, New Jersey. Urbanization Water Qual Control 45–54

    Google Scholar 

  • Winston RJ, Hunt WF, Kennedy SG, Wright JD, Lauffer MS (2012) Field evaluation of storm-water control measures for highway runoff treatment. J Environ Eng 138(1):101–111

    Article  CAS  Google Scholar 

  • Winston RJ, Hunt WF, Kennedy SG, Merriman LS, Chandler J, Brown D (2013) Evaluation of floating treatment wetlands as retrofits to existing stormwater retention ponds. Ecol Eng 54:254–265

    Article  Google Scholar 

  • Wium-Andersen T, Nielsen AH, Hvitved-Jacobsen T, Kristensen NK, Brix H, Arias C, Vollertsen J (2012) Sorption media for stormwater treatment—a laboratory evaluation of five low-cost media for their ability to remove metals and phosphorus from artificial stormwater. Water Environ Res 84:605–616

    Article  CAS  Google Scholar 

  • Xanthopoulos C, Hahn HH (1990) Pollutants attached to particles from drainage areas. Sci Total Environ 93:441–448

    Google Scholar 

  • Yu SL, Kuo JT, Fassman EA, Pan H (2001) Field test of grassed-swale performance in removing runoff pollution. J Water Res Plan Manage 127(3):168–171

    Article  Google Scholar 

  • Zhang Z, Cui B, Fan X (2012) Removal mechanisms of heavy metal pollution from urban runoff in wetlands. Front Earth Sci 6(4):433–444

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Godecke-Tobias Blecken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blecken, GT., Tondera, K., Österlund, H., Viklander, M. (2018). Metals: Occurrence, Treatment Efficiency and Accumulation Under Varying Flows. In: Tondera, K., Blecken, GT., Chazarenc, F., Tanner, C. (eds) Ecotechnologies for the Treatment of Variable Stormwater and Wastewater Flows. SpringerBriefs in Water Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-70013-7_5

Download citation

Publish with us

Policies and ethics