Advertisement

Fuzzy Decision Making System for Model-Oriented Academia/Industry Cooperation: University Preferences

  • Galyna Kondratenko
  • Yuriy Kondratenko
  • Ievgen Sidenko
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 125)

Abstract

This paper discusses the effective models of cooperation of universities and IT companies, as well as the hierarchic approach towards projecting certain decision making support systems (DSS) based on fuzzy logic. Special attention is paid to fuzzy DSS as an advisor in choosing the most appropriate cooperation model for a certain department of universities eager to become partners within the frames of future cooperation with a certain IT company. The article features hierarchic structure, results of rule bases and DSS software based on the approximation of fuzzy systems with discrete output. It also contains the results of imitational DSS modeling based on the elaborated DSS developing the most rational model of cooperation for a university party of the cooperation of the “University—IT company” type.

Keywords

Decision support system Fuzzy logic Membership function Linguistic term Rule base University-industry cooperation 

References

  1. 1.
    Drozd, J., Drozd, A.: Models, methods and means as resources for solving challenges in co-design and testing of computer systems and their components. In: The Ninth International Conference on Digital Technologies, Zhilina, Slovak Republic, 29–31 May, pp. 225–230 (2013). https://doi.org/10.1109/DT.2013.6566307
  2. 2.
    Kazymyr, V.V., Sklyar, V.V., Lytvyn, S.V., Lytvynov, V.V.: Communications management for academia-industry cooperation in IT-engineering: training. In: Kharchenko, V.S. (ed.) Chernigiv-Kharkiv: MESU, ChNTU, NASU “KhAI” (2015) (in Ukrainian)Google Scholar
  3. 3.
    Kharchenko, V.S., Sklyar, V.V.: Cooperation between universities and IT-industry: some problems and solutions. J. Kartblansh 34, 43–50 (2014) (in Russian)Google Scholar
  4. 4.
    Kondratenko, Y., Simon, D., Atamanyuk, I.: University curricula modification based on advancements in information and communication technologies. In: Ermolayev, V. et al. (eds.) Proceedings of the 12th International Conference on Information and Communication Technologies in Education, Research, and Industrial Application. Integration, Harmonization and Knowledge Transfer, vol. 1614, ICTERI’2016, CEUR-WS, Kyiv, Ukraine, 21–24 June, pp. 184–199 (2016)Google Scholar
  5. 5.
    Kondratenko, Y.P.: The role of inter-university consortia for improving higher education system. In: Smithee, M. (ed.) Proceedings of Phi Beta Delta, vol. 2, issue 1, pp. 26–27. Honor Society for International Scholars, USA (2011)Google Scholar
  6. 6.
    Kondratenko, Y., Kharchenko, V.: Analysis of features of innovative collaboration of academic institutions and IT-companies in areas S2B and B2S. J. Tech. News 1(39), 15–19 (2014) (in Ukrainian)Google Scholar
  7. 7.
    Kondratenko, Y.P., Kondratenko, G.V., Sidenko, Ie.V., Kharchenko, V.S.: Cooperation models between universities and IT companies, decision-making systems based on fuzzy logic. monograph. In: Kondratenko, Y.P., (ed.) Kharkiv: MESU, PMBSNU, NAU “KAI” (2015) (in Ukrainian)Google Scholar
  8. 8.
    Lytvynov, V.V., Kharchenko, V.S., Lytvyn, S.V., Saveliev, M.V., Trunova, E.V., Skiter, I.S.: Tool-Based Support of University-Industry Cooperation in IT-Engineering. Chernigiv, ChNTU (2015). (in Ukrainian)Google Scholar
  9. 9.
    Starov, O., Kharchenko, V., Sklyar, V., Khokhlienkov, N.: Startup company and spin-off advanced partnership via web-based networking. In: Proceedings of the University-Industry Interaction Conference, Amsterdam, May, pp. 115–124 (2013)Google Scholar
  10. 10.
    Starov, O., Sklyar, V., Kharchenko, V., Boyarchuk, A., Phillips, C.: A student-in-the-middle approach for successful university and business cooperation in IT. In: Proceedings of the University-Industry Interaction Conference, Barcelona, Spain, April, pp. 193–207 (2014)Google Scholar
  11. 11.
    Trunov, A.N.: An adequacy criterion in evaluating the effectiveness of a model design process. Eastern-Eur. J. Enterp. Technol. 1 4(73), 36–41 (2015)Google Scholar
  12. 12.
    Trunov, A.: Recurrent approximation as the tool for expansion of functions and models of operation of neural networks. Eastern-Eur. J. Enterp. Technol. 5 4(83), 41–48 (2016)Google Scholar
  13. 13.
    Blokhin, L.N., Osadchiy, S.I., Bezkorovainyi, Y.N.: Technology of structural identification and subsequent synthesis of optimal stabilization systems for unstable dynamic objects. J. Autom. Inf. Sci. 39(11), 57–66 (2007)CrossRefGoogle Scholar
  14. 14.
    Chang, D.Y.: Applications of the extent analysis method on fuzzy AHP. J. Eur. J. Oper. Res. 95, 649–655 (1996)CrossRefzbMATHGoogle Scholar
  15. 15.
    Cheng, R.W., Chang, C.-W., Lin, H.-L.: A fuzzy ANP-based approach to evaluate medical organizational performance. J. Int. Manag. Sci. 19, 53–74 (2008)Google Scholar
  16. 16.
    Kondratenko, Y.P., Sidenko, Ie.V.: Decision-making based on fuzzy estimation of quality level for cargo delivery. In: Zadeh, L.A., et al. (eds.) Recent Developments and New Directions in Soft Computing. Studies in Fuzziness and Soft Computing, vol. 317, pp. 331–344. Springer International Publishing, Switzerland (2014). https://doi.org/10.1007/978-3-319-06323-2_21
  17. 17.
    Laarhoven, V., Pedrych, W.: Fuzzy extension for Saaty’s priority theory. J. Fuzzy Sets Syst. 11, 229–241 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Messarovich, M.D., Macko, D., Takahara, Y.: Theory of Hierarchical Multilevel Systems. Academic Press, New York (1970)zbMATHGoogle Scholar
  19. 19.
    Narasimha, B., Chen, N.: Effect of imprecision in specification of pair-wise comparisons on ranking of alternatives using fuzzy AHP. J. AMCIS 238–243 (2001)Google Scholar
  20. 20.
    Rotshtein, A.P.: Intellectual Technologies of Identification: Fuzzy Logic, Genetic Algorithms, Neuron Networks. UNIVERSUM, Vinnitsa (in Russian)Google Scholar
  21. 21.
    Gil-Aluja, J.: Investment in Uncertainty. Kluwer Academic Publishers, Dordrecht, Boston, London (1999)CrossRefzbMATHGoogle Scholar
  22. 22.
    Gil-Lafuente, A.M., Merigo J.M.: Decision making techniques in political management. In: Lodwick, W.A., Kacprzhyk, J. (eds.) Fuzzy Optimization. Studies in Fuzziness and Soft Computing, vol. 254, pp. 389–405. Springer, Berlin, Heidelberg (2010)Google Scholar
  23. 23.
    Osadchiy, S.I., Kalich, V.M., Didyk, O.K.: Structural identification of unmanned supercavitation vehicle based on incomplete experimental data. In: IEEE 2nd International Conference on Actual Problems of Unmanned Air Vehicles Developments, Kiev, Ukraine, 15–17 October, pp. 93–95 (2013). https://doi.org/10.1109/APUAVD.2013.6705294
  24. 24.
    Palagin, A.V., Opanasenko, V.N.: Reconfigurable computing technology. J. Cybern. Syst. Anal. (Springer, New York) 43, 675–686 (2007)Google Scholar
  25. 25.
    Piegat, A.: Fuzzy Modeling and Control. Springer, Heidelberg (2001)CrossRefzbMATHGoogle Scholar
  26. 26.
    Zadeh, L.A.: Fuzzy sets. J. Inf. Control 8(3), 338–353 (1965)CrossRefzbMATHGoogle Scholar
  27. 27.
    Zimmerman, H.J.: Fuzzy Set Theory. Kluwer, Boston (1991)Google Scholar
  28. 28.
    Shebanin V., Atamanyuk I., Kondratenko Y., Volosyuk Y.: Application of fuzzy predicates and quantifiers by matrix presentation in informational resources modeling. perspective technologies and methods in MEMS design. In: Proceedings of the International Conference MEMSTECH-2016. Lviv-Poljana, Ukraine, 20–24 April, pp. 146–149 (2016). https://doi.org/10.1109/MEMSTECH.2016.7507536
  29. 29.
    Kondratenko, Y.P.: Robotics, automation and information systems: future perspectives and correlation with culture, sport and life science. In: Gil-Lafuente, A.M., Zopounidis, C. (eds.) Decision Making and Knowledge Decision Support Systems. Lecture Notes in Economics and Mathematical Systems, vol. 675, pp. 43–56. Springer International Publishing, Switzerland (2015). https://doi.org/10.1007/978-3-319-03907-7_6
  30. 30.
    Drozd, J., Drozd, A., Maevsky, D., Shapa, L.: The levels of target resources development in computer systems. In: Proceedings of the IEEE East-West Design & Test Symposium, Kiev, Ukraine, pp. 185–189 (2014)Google Scholar
  31. 31.
    Kondratenko, Y.P., Klymenko, L.P., Al Zu’bi, E.Y.M.: Structural optimization of fuzzy systems’ rules base and aggregation models. J. Kybernetes 42(5), 831–843 (2013).  https://doi.org/10.1108/K-03-2013-0053 CrossRefGoogle Scholar
  32. 32.
    Lodwick, W.A., Kacprzhyk, J. (eds.): Fuzzy optimization. In: Journal of Studies in Fuzziness and Soft Computing, vol. 254. Springer, Berlin, Heidelberg (2010)Google Scholar
  33. 33.
    Setnes, M.: Simplification of fuzzy rule bases. In: Proceedings of the International Conference EUFIT, Aachen, Germany, pp. 1115–1119 (1996)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Galyna Kondratenko
    • 1
  • Yuriy Kondratenko
    • 1
  • Ievgen Sidenko
    • 1
  1. 1.Department of Intelligent Information SystemsPetro Mohyla Black Sea National UniversityMykolaivUkraine

Personalised recommendations