Alternative Fuzzy Approaches for Efficiently Solving the Capacitated Vehicle Routing Problem in Conditions of Uncertain Demands

Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 125)

Abstract

This paper deals with the analysis of fuzzy models and fuzzy approaches for efficiently solving transportation and vehicle routing problems (VRP) with constrains on vehicle’s capacity. Authors focused their research on VRP for marine bunkering tankers and planning and optimisation of tanker’s routes in conditions of uncertain fuel demands at nodes. Triangular fuzzy numbers are proposed for modelling uncertain demands and the optimization problem is considered as multi-criteria problem with (a) minimizing total length of planned routes, (b) satisfying all orders at nodes (ships, ports), (c) maximizing total sales volume of unloaded fuel, (d) minimizing fleet size. Two alternative fuzzy approaches for efficiently solving such marine VRP are discussed. The first alternative deals with the development of a multi-stage iterative heuristic procedure and the second alternative concerns the development of a fuzzy decision-making system for the current evaluation of satisfaction values for uncertain order realizations.

Keywords

Vehicle routing problem (VRP) Capacitated vehicle routing problem (CVRP) Fuzzy demands Iterative heuristic Decision-making Satisfaction value 

Notes

Acknowledgements

The authors gratefully acknowledge the support of this research work by the Ruhr University Bochum and Deutscher Akademischer Austauschdienst (DAAD), Germany, by awarding one of the author with the research 2000 fellowship and research 2010-2011 fellowship.

References

  1. 1.
    Christiansen, M., Fagerholt, K., Nygreen, B., Ronen, D.: Maritime transportation. In: Barnhart, C., Laporte, G. (eds.) Handbook in OR & MS, vo. 14, pp. 189–284. Elsevier (2007)Google Scholar
  2. 2.
    Gil-Aluja, J.: Investment in Uncertainty. Kluwer Academic Publishers, Dordrecht, Boston, London (1999)CrossRefMATHGoogle Scholar
  3. 3.
    Gil-Aluja, J.: Elements for a Theory of Decision in Uncertainty, vol. 32. Springer Science & Business Media (1999)Google Scholar
  4. 4.
    Gil-Aluja, J.: Fuzzy Sets in the Management of Uncertainty, vol.145. Springer Science & Business Media (2004)Google Scholar
  5. 5.
    Gil-Aluja, J.: The Interactive Management of Human Resources in Uncertainty, vol. 11. Springer Science & Business Media (2013)Google Scholar
  6. 6.
    Gil-Aluja, J.: Handbook of Management Under Uncertainty, vol. 55. Springer Science & Business Media (2013)Google Scholar
  7. 7.
    Gil-Aluja, J., Gil-Lafuente, A.M., Klimova, A.: The optimization of the economic segmentation by means of fuzzy algorithms. J. Comput. Opt. Econ. Finance (Nova Science Publishers) 1(3), 169–186 (2008)Google Scholar
  8. 8.
    Gil-Aluja, J., Gil-Lafuente, A.M., Merigó, J.M.: Using homogeneous groupings in portfolio management. Expert Syst. Appl. 38(9), 10950–10958 (2011)CrossRefGoogle Scholar
  9. 9.
    Gil Aluja, J. (ed.): Les Universitats En El Centenari Del Futbol Club Barcelona. Estudis En L’Ambit De L’Esport, Proleg, Josef Lluis Nunez (1999)Google Scholar
  10. 10.
    Gil Lafuente, A.M.: Fuzzy Logic in Financial Analysis. Studies in Fuzziness and Soft Computing, vol. 175. Springer, Berlin (2005)Google Scholar
  11. 11.
    Gil-Lafuente, A.M., Zopounidis, C. (eds.): Decision Making and Knowledge Decision Support Systems, Lecture Notes in Economics and Mathematical Systems, vol. 675. Springer (2015)Google Scholar
  12. 12.
    Halvorsen-Weare, E.E., Fagerholt, K.: Routing and scheduling in a liquefied natural gas shipping problem with inventory and berth constraints. Ann. Oper. Res. (Springer) (2010)Google Scholar
  13. 13.
    Jamison, K.D., Lodwick, W.A.: Minimizing unconstraint fuzzy functions. Fuzzy Sets Syst. 103, 457–464 (1999)CrossRefMATHGoogle Scholar
  14. 14.
    Jamshidi, M., Kreinovich, V., Kacprzyk, J. (eds.): Advance Trends in Soft Computing. Series: Studies in Fuzziness and Soft Computing, vol. 312. Springer (2013)Google Scholar
  15. 15.
    Kauffman, A., Gil-Aluja, J.: Introduction of fuzzy sets theory to management of enterprises. Minsk, Higher School (1992). (in Russian)Google Scholar
  16. 16.
    Kondratenko, Y.P., Werners, B., Kondratenko, G.V.: Fuzzy models and algorithms for solving marine routing problem using values of statistical level. J. Model. Measur. Control AMSE Period. Ser. D 28(2), 47–59 (2007)Google Scholar
  17. 17.
    Kondratenko, G.V., Kondratenko, Y.P., Romanov, D.O.: Fuzzy models for capacitive vehicle routing problem in uncertainty. In: Proceeding of the 17th International DAAAM Symposium “Intelligent Manufacturing and Automation”, Vienna, Austria, pp. 205–206 (2006)Google Scholar
  18. 18.
    Kondratenko, Y.P., Encheva, S.B., Sidenko E.V.: Synthesis of intelligent decision support systems for transport logistic. In: Proceeding of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS’2011), vol. 2, Prague, Czech Republic, Sept. 15–17, pp. 642–646 (2011)Google Scholar
  19. 19.
    Kondratenko, Y.P., Klymenko, L.P., Al Zu’bi, E.Y.M.: Structural optimization of fuzzy systems’ rules base and aggregation models. Kybernetes 42(5), 831–843 (2013)Google Scholar
  20. 20.
    Kondratenko, Y.P., Kondratenko, N.Y.: Soft computing analytic models for increasing efficiency of fuzzy information processing in decision support systems. In: Hudson, R. (ed.) Decision Making: Processes, Behavioral Influences and Role in Business Management, pp. 41–78. Nova Science Publishers, New York (2015)Google Scholar
  21. 21.
    Kondratenko, Y., Kondratenko, V.: Soft computing algorithm for arithmetic multiplication of fuzzy sets based on universal analytic models. In: Ermolayev, V., et al. (eds.) Information and Communication Technologies in Education, Research, and Industrial Application. Communications in Computer and Information Science, vol. 469, ICTERI’2014, pp. 49–77. Springer International Publishing, Switzerland (2014)Google Scholar
  22. 22.
    Kondratenko, Y.P., Sidenko, Ie.V.: Decision-making based on fuzzy estimation of quality level for cargo delivery. In: Zadeh, L.A., Abbasov, A.M., Yager, R.R., Shahbazova, S.N., Reformat, M.Z. (eds.) Recent Developments and New Directions in Soft Computing. Studies in Fuzziness and Soft Computing, vol. 317, pp. 331–344. Springer International Publishing, Switzerland (2014)Google Scholar
  23. 23.
    Kondratenko, Y., Klymenko, L., Yemelyanov, V., Datsy, O., Koretskiy, N., Gil Lafuente, J., Luciano, E.V., Molina, L.A., Reverter, S.B., Merigo Lindahl, J.M., Klimova, A., Moro, L.S.: Explorando Nuevos Mercados: Ucrania. Real Academia de Ciencias Economicas y Financieras, Monograph. Directora Anna Maria Gil Lafuente. Barcelona (2012)Google Scholar
  24. 24.
    Kondratenko, Y.P., Klymenko, L.P., Sidenko, Ie.V.: Comparative analysis of evaluation algorithms for decision-making in transport logistics. In: Jamshidi, M., Kreinovich, V., Kazprzyk, J. (eds.) Advance Trends in Soft Computing, Studies in Fuzziness and Soft Computing, vol. 312, pp. 203–217. Springer (2014)Google Scholar
  25. 25.
    Kondratenko Y.P., Al Zubi, E.Y.M.: The optimisation approach for increasing efficiency of digital fuzzy controllers. In: Annals of DAAAM for 2009 & Proceeding of the 20th International DAAAM Symposium “Intelligent Manufacturing and Automation”, pp. 1589–1591. DAAAM International, Vienna, Austria (2009)Google Scholar
  26. 26.
    Kondratenko, Y.P., Korobko, O.V., Kondratenko, V.Y., Kozlov, O.V.: Optimization models and algorithms of multistage processes of liquid cargoes transportation for computer DSS. In: Armborst, K., Degel, D., Lutter, P., Pietschmann, U., Rachuba, S., Shultz, K., Wiesche, L. (eds.) Management Science: Modelle und Methoden zur quantitativen Entscheidungsunterstutzung. Festschrift zum 60. Geburtstag von Brigitte Werners, pp. 241–270. Verlag Dr. Covac, Hamburg (2013)Google Scholar
  27. 27.
    Kondratenko, Y.P.: Optimisation Problems in Marine Transportation. Incidencia de las relaciones economicas internacionales en la recuperacion economica del area mediterranea. VI Acto Internacional celebrado en Barcelona el 24 de febrero de 2011, pp. 43–52. Real Academia de Ciencias Economicas y Financieras, Barcelona (2011)Google Scholar
  28. 28.
    Laporte, G.: The travelling salesman problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59, 231–248 (1992)CrossRefMATHGoogle Scholar
  29. 29.
    Laporte, G.: The vehicle routing problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(3), 345–358 (1992)CrossRefMATHGoogle Scholar
  30. 30.
    Lodwick, W.A., Kacprzhyk, J. (eds.): Fuzzy Optimization. Studies in Fuzziness and Soft Computing, vol. 254. Springer, Berlin, Heidelberg (2010)Google Scholar
  31. 31.
    Merigó, J.M., Gil-Lafuente, A.M.: New decision-making techniques and their application in the selection of financial products. Inf. Sci. (2010). https://doi.org/10.1016/j.ins.2010.01.028
  32. 32.
    Merigo, J.M., Gil-Lafuente, A.M., Gil-Aluja, J.: Decision making with the induced generalized adequacy coefficient. Appl. Comput. Math. 2(2), 321–339 (2011)MathSciNetMATHGoogle Scholar
  33. 33.
    Merigó, J.M., Gil-Lafuente, A.M., Gil-Aluja, J.: A new aggregation method for strategic decision making and its application in assignment theory. Afr. J. Bus. Manag. 5(11), 4033–4043 (2011)Google Scholar
  34. 34.
    Merigó, J.M., Gil-Lafuente, A.M.: The generalized adequacy coefficient and its application in strategic decision making. Fuzzy Econ. Rev. 13, 17–36 (2008)Google Scholar
  35. 35.
    Merigo, J.M., Gil-Lafuente, A.M., Yager, R.R.: An overview of fuzzy research with bibliometric indicators. Appl. Soft Comput. 27, 420–433 (2015)CrossRefGoogle Scholar
  36. 36.
    Simon, D.: Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence. Wiley (2013)Google Scholar
  37. 37.
    Teodorovic, D., Pavkovich, G.: The fuzzy set theory approach to the vehicle routing problem when demand at nodes is uncertain. Fuzzy Sets Syst. 82, 307–317 (1996)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem. SIAM, Philadelphia (2002)MATHGoogle Scholar
  39. 39.
    Tamir, D.E., Rishe, N.D., Kandel, A. (eds.): Fifty Years of Fuzzy Logic and Its Applications. Studies in Fuzziness and Soft Computing, vol. 326. Springer International Publishing, Cham, Switzerland (2015)Google Scholar
  40. 40.
    Werners, B.: An interactive fuzzy programming system. Fuzzy Sets Syst. 23, 131–147 (1987)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Werners, B.: Interactive multiple objective programming subject to flexible constraints. Eur. J. Oper. Res. 31, 342–349 (1987)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Werners, B., Drawe, M.: Capacitated vehicle routing problem with fuzzy demand. In: Verdegay, J.-L. (ed.) Fuzzy Sets Based Heuristics for Optimization, Studies in Fuzziness and Soft Computing, pp. 317–335. Berlin (2003)Google Scholar
  43. 43.
    Werners, B., Kondratenko, Y.P.: Tanker routing problem with fuzzy demands of served ships. Int. J. Syst. Res. Inf. Technol. 1, 47–64 (2009)Google Scholar
  44. 44.
    Werners, B., Kondratenko, Y.P.: Tanker Routing Problem with Fuzzy Demand. Arbeitsberichte zur Unternehmensforschung Nr. 2001/04. Fakultät für Wirtschaftswissenschaft, Ruhr-Universität Bochum (2001)Google Scholar
  45. 45.
    Werners, B., Kondratenko, Y.P.: Fuzzy multi-criteria optimization for vehicle routing with capacity constraints and uncertain demands. In: Proceedings of the International Congress on Cost Control, Barcelona, Spain, 17–18 March 2011, pp. 145–159 (2011)Google Scholar
  46. 46.
    Werners, B.: Grundlagendes Operations Research: Mit Aufgaben und Lösungen, 2. Aufl., Berlin (2008)Google Scholar
  47. 47.
    Yager, R.R.: Golden rule and other representative values for intuitionistic membership grades. IEEE Trans. Fuzzy Syst. 23, 2260–2269 (2015)CrossRefGoogle Scholar
  48. 48.
    Yager, R.R.: On the OWA aggregation with probabilistic inputs. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 23(Suppl. 1), 143–162 (2015)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefMATHGoogle Scholar
  50. 50.
    Zadeh, L.A., Abbasov, A.M., Yager, R.R., Shahbazova, S.N., Reformat, M.Z. (eds.): Recent Developments and New Directions in Soft Computing. Studies in Fuzziness and Soft Computing, vol. 317. Springer (2014) Google Scholar
  51. 51.
    Zadeh, L.A., Abbasov, A.M., Yager, R.R., Shahbazova, S.N., Reformat, M.Z. (eds.): Recent Developments and New Directions in Soft Computing Foundations and Applications. Studies in Fuzziness and Soft Computing, vol. 342. Springer, Berlin, Heidelberg (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of ManagementRuhr University BochumBochumGermany
  2. 2.Intelligent Information Systems DepartmentPetro Mohyla Black Sea National UniversityMykolaivUkraine

Personalised recommendations