Advertisement

Partner Selection in Green Innovation Projects

  • Marina Z. Solesvik
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 125)

Abstract

In this paper, we consider issues related to green innovation strategies. Notably, we focus on the issues related to R&D strategic alliances aimed to develop green technologies in maritime sector. Still managers often use their gut feelings to select partners from the prospective candidates. However, expensive R&D projects aimed at developing radical green innovations need thorough preliminary analysis of collaborators. We apply fuzzy logic approach to facilitate decision making of management teams who are responsible for selection partners for collaborative green innovation projects. Namely, in this study the approach of formal concept analysis is used to facilitate partner selection.

Keywords

Formal concept analysis Fuzzy logic Green innovation Partner selection 

References

  1. 1.
    Ambec, S., Lanoie, P.: Does it pay to be green? A systematic overview. Acad. Manage. Perspect. 22(4), 45–62 (2008)CrossRefGoogle Scholar
  2. 2.
    Baker, T., Nelson, R.E.: Creating something from nothing: resource construction through entrepreneurial bricolage. Adm. Sci. Q. 50(3), 329–366 (2005)CrossRefGoogle Scholar
  3. 3.
    Berg, S., Friedman, P.: Corporate courtship and successful joint ventures. Calif. Manag. Rev. 22(2), 85–91 (1980)CrossRefGoogle Scholar
  4. 4.
    Bierly III, P.E., Gallagher, S.: Explaining alliance partner selection: fit, trust and strategic expediency. Long Range Plan. 40(2), 134–153 (2007)CrossRefGoogle Scholar
  5. 5.
    Borch, O.J., Solesvik, M.Z.: Innovation on the open sea: examining competence transfer and open innovation in the design of offshore vessels. Technol. Innov. Manage. Rev. 5(9), 17–22 (2015)Google Scholar
  6. 6.
    Borch, O.J., Solesvik, M.Z.: Partner selection versus partner attraction in R&D strategic alliances: the case of the Norwegian shipping industry. Int. J. Technol. Mark. 11(4), 421–439 (2016)CrossRefGoogle Scholar
  7. 7.
    du Boucher-Ryan, P., Bridge, D.: Collaborative recommending using formal concept analysis. Knowl.-Based Syst. 19, 309–315 (2006)CrossRefGoogle Scholar
  8. 8.
    Cao, Q., Wang, Q.: Optimizing vendor selection in a two-stage outsourcing process. Comput. Oper. Res. 34(12), 3757–3768 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Carpineto, C., Romano, G.: Concept Data Analysis: Theory and Applications. Wiley, Hoboken, NJ (2004)CrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, S.-H., Lee, H.-T., Wu, Y.-F.: Applying ANP approach to partner selection for strategic alliance. Manage. Decis. 46(3), 449–465 (2008)CrossRefGoogle Scholar
  11. 11.
    Cheung, K., Vogel, D.: Complexity reduction in lattice-based information retrieval. Inf. Retrieval 8(2), 285–299 (2005)CrossRefGoogle Scholar
  12. 12.
    Choy, K.L., Lee, W.B., Lo, V.: An enterprise collaborative management system—a case study of supplier relationship management. J. Enterp. Inf. Manage. 17(3), 191–207 (2004)CrossRefGoogle Scholar
  13. 13.
    Eiadat, Y., Kelly, A., Roche, F., Eyadat, H.: Green and competitive? An empirical test of the mediating role of environmental innovation strategy. J. World Bus. 43(2), 131–145 (2008)CrossRefGoogle Scholar
  14. 14.
    Encheva, S., Kondratenko, Y., Solesvik, M.Z., Tumin, S., Simos, T.E., Psihoyios, G.: Decision support systems in logistics. In: AIP Conference Proceedings, vol. 1060, no. 1, pp. 254–256 (2008)Google Scholar
  15. 15.
    Fuqing, Z., Yi, H., Dongmei, Y.: A multi-objective optimization model of the partner selection problem in a virtual enterprise and its solution with generic algorithms. Int. J. Adv. Manuf. Technol. 28(11–12), 1246–1253 (2006)CrossRefGoogle Scholar
  16. 16.
    Ganter, B., Stumme, G., Wille, R.: Formal Concept Analysis: Foundations and Applications. LNAI 3626. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Geringer, J.M.: Strategic determinants of partner selection criteria in international joint ventures. J. Int. Bus. Stud. 22(1), 41–62 (1991)CrossRefGoogle Scholar
  18. 18.
    Gil-Aluja, J.: Elements for a Theory of Decision in Uncertainty, vol. 32. Springer Science & Business Media (1999)Google Scholar
  19. 19.
    Gil-Aluja, J.: Fuzzy Sets in the Management of Uncertainty, vol. 145. Springer Science & Business Media (2004)Google Scholar
  20. 20.
    Hart, S.L.: A natural-resource-based view of the firm. Acad. Manage. Rev. 20(4), 986–1014 (1995)Google Scholar
  21. 21.
    Jaffe, A.B., Peterson, S.R., Portney, P.R., Stavins, R.N.: Environmental regulation and the competitiveness of US manufacturing: what does the evidence tell us? J. Econ. Lit. 33(1), 132–163 (1995)Google Scholar
  22. 22.
    Jarimo, T., Salo, A.: Multicriteria partner selection in virtual organisations with transportation costs and other network interdependencies, Technical report. Helsinki University of Technology, Helsinki (2008)Google Scholar
  23. 23.
    Kondratenko, Y.P., Klymenko, L.P., Sidenko, Ie.V.: Comparative analysis of evaluation algorithms for decision-making in transport logistics. In: Jamshidi, M., Kreinovich, V., Kazprzyk, J. (eds.) Advance Trends in Soft Computing. Studies in Fuzziness and Soft Computing, vol. 312, pp. 203–217 (2014)Google Scholar
  24. 24.
    Kondratenko, Y., Kondratenko, V.: Soft computing algorithm for arithmetic multiplication of fuzzy sets based on universal analytic models. In: Ermolayev, V. et al. (eds.) Information and Communication Technologies in Education, Research, and Industrial Application. Communications in Computer and Information Science 469. ICTERI’2014, pp. 49–77. Springer International Publishing, Switzerland (2014)Google Scholar
  25. 25.
    Kondratenko, Y.P., Sidenko, Ie.V.: Decision-making based on fuzzy estimation of quality level for cargo delivery. In: Zadeh, L.A. et al. (eds.) Recent Developments and New Directions in Soft Computing. Studies in Fuzziness and Soft Computing 317, pp. 331–344. Springer International Publishing Switzerland (2014)Google Scholar
  26. 26.
    Merrill, M.D., Tennyson, R.D.: Concept Teaching: An Instructional Design Guide. Educational Technology, Englewood Cliffs, NJ (1977)Google Scholar
  27. 27.
    Mikhailov, L.: Fuzzy analytical approach to partnership selection in formation of virtual enterprises. Omega 30(5), 393–401 (2002)CrossRefGoogle Scholar
  28. 28.
    Ordoobadi, S.M.: Fuzzy logic and evaluation of advanced technologies. Ind. Manage. Data Syst. 108(7), 928–946 (2008)CrossRefGoogle Scholar
  29. 29.
    Pearce, D.W., Markandya, A., Barbier, E.:. Blueprint for a Green Economy, vol. 1. Earthscan (1989)Google Scholar
  30. 30.
    Pidduck, A.B.: Issues in supplier partner selection. J. Enterp. Inf. Manage. 19(3), 262–276 (2006)CrossRefGoogle Scholar
  31. 31.
    Sarkis, J., Talluri, S., Gunasekaran, A.: A strategic model for agile virtual enterprise partner selection. Int. J. Oper. Prod. Manage. 27(11), 1213–1234 (2007)CrossRefGoogle Scholar
  32. 32.
    Reuer, J.J., Ariño, A., Olk, P.M.: Entrepreneurial Alliances. Prentice Hall (2011)Google Scholar
  33. 33.
    Solesvik, M.Z., Encheva, S.: Partner selection for interfirm collaboration in ship design. Ind. Manage. Data Syst. 110(5), 701–717 (2010)CrossRefGoogle Scholar
  34. 34.
    Solesvik, M., Gulbrandsen, M.: Partner selection for open innovation. Technol. Innov. Manage. Rev. 3(4), 6–11 (2013)Google Scholar
  35. 35.
    Solesvik, M.Z., Westhead, P.: Partner selection for strategic alliances: case study insights from the maritime industry. Ind. Manage. Data Syst. 110(6), 841–860 (2010)CrossRefGoogle Scholar
  36. 36.
    Sysla: New requirements can make fuel costs twice as high. http://sysla.no/2016/11/07/snappet/nye-krav-dobler-drivstoffkostnadene_172956/ (2016)
  37. 37.
    Wang, T.-C., Chen, Y.-H.: Applying consistent fuzzy preference relations to partnership selection. Omega 35(4), 384–388 (2007)CrossRefGoogle Scholar
  38. 38.
    Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)CrossRefGoogle Scholar
  39. 39.
    Wille, R.: Conceptual knowledge processing in the field of economics. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis: Foundations and Applications, vol. 3626, pp. 226–249. Springer, Heidelberg, LNAI (2005)Google Scholar
  40. 40.
    Wolff, K.E.: A first course in formal concept analysis: how to understand line diagrams. In: Faulbaum, F. (ed.) Advances in Statistical Software, pp. 429–438. Gustav Fischer Verlag, Stuttgart (1993)Google Scholar
  41. 41.
    Wu, N., Su, P.: Selection partners in virtual enterprise paradigm. Robot. Comput.-Integr. Manuf. 21(2), 119–131 (2005)CrossRefGoogle Scholar
  42. 42.
    Wu, W.-H., Lu, H.-L., Huang, D.-Y.: Government expenditure decision-making under fuzzy relations. Int. J. Serv. Stand. 3(3), 289–298 (2007)Google Scholar
  43. 43.
    Wu, W.Y., Shih, H.-A., Chan, H.-C.: The analytic network process for partner selection criteria in strategic alliances. Expert Syst. Appl. 36(3), 4646–4653 (2009)CrossRefGoogle Scholar
  44. 44.
    Young, J.: Reducing waste, saving materials. In: Brown, L., Flavin, C., Postel, S., Starke, L. (eds.) State of the World, pp. 39–55. Norton, New York (1991)Google Scholar
  45. 45.
    Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90(2), 111–127 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Nord University Business SchoolNord UniversityBodøNorway

Personalised recommendations