Advertisement

Management System for Agricultural Enterprise on the Basis of Its Economic State Forecasting

  • Igor Atamanyuk
  • Yuriy Kondratenko
  • Natalia Sirenko
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 125)

Abstract

Management system (MS) for agricultural enterprise on the basis of its economic state forecasting was developed. MS allows to estimate the results of enterprise’s work in future under the realization of certain reorganization (change of land resources, labour resources, fixed assets). Calculating method for forecasting economic indices of agricultural enterprises on the basis of vector polynomial exponential algorithm for extrapolation of the realizations of random sequences is worked out. The model of prognosis allows to estimate the results of enterprise functioning (to estimate future gross profit, gross production) after its reorganization. Prognostic model does not impose any restrictions on the forecast random sequence (linearity, stationarity, Markov behavior, monotone, etc.) and thus allows fully to take into consideration stochastic peculiarities of functioning of agricultural enterprises. The simulation results confirm high efficiency of introduced calculating method. The scheme for reflecting the peculiarities of the forecast model functioning are also presented in the chapter. The method can be realized in the decision support systems for agricultural and non-agricultural enterprises with various sets of economic indices.

Keywords

Management system Calculation method Random sequence Canonical decomposition Forecasting economic indices 

References

  1. 1.
    Drozd, J., Drozd, A.: Models, methods and means as resources for solving challenges in co-design and testing of computer systems and their components. In: Proceedings of 9th International Conference on Digital Technologies, Zhilina, Slovak Republic, pp. 225–230 (2013)Google Scholar
  2. 2.
    Gil-Aluja, J.: Investment in Uncertainty. Kluwer Academic Publishers, Dordrecht, Boston, London (1999)CrossRefzbMATHGoogle Scholar
  3. 3.
    Gil-Lafuente, A.M.: Fuzzy Logic in Financial Analysis. Studies in Fuzziness and Soft Computing, vol. 175. Springer, Berlin (2005)Google Scholar
  4. 4.
    Trunov, A.: An adequacy criterion in evaluating the effectiveness of a model design process. Eastern-Eur. J. Enterprise Technol. 1, 4(73), 36–41 (2015)Google Scholar
  5. 5.
    Kauffman, A., Gil-Aluja, J.: Introduction of fuzzy sets theory to management of enterprises (Translated from Spanish). In: Krasnoproshin, V.V., Lepeshinskiy, N.A. (eds.). Minsk, Higher School (1992) (in Russian)Google Scholar
  6. 6.
    Kauffman, A., Gil-Aluja, J.: Models for the study of hidden influences (Translated from Spanish). In: Krasnoproshin, V.V., Lepeshinskiy, N.A. (eds.). Minsk, Higher School (1993) (in Russian)Google Scholar
  7. 7.
    Kauffman, A., Gil-Aluja, J.: Iterative methods of decision-making based on the models with uncertainty (Translated from Spanish). In: Krasnoproshin, V.V., Lepeshinskiy, N.A. (eds.). Minsk, Skarina (1995) (in Russian)Google Scholar
  8. 8.
    Trunov, A.: Recurrent approximation as the tool for expansion of functions and models of operation of neural networks. Eastern-Eur. J. Enterprise Technol. 5, 4(83), 41–48 (2016)Google Scholar
  9. 9.
    Kondratenko, Y.P., Encheva, S.B., Sidenko, E.V.: Synthesis of intelligent decision support systems for transport logistic. In: Proceeding of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS’2011, vol. 2, Prague, Czech Republic, pp. 642–646 (2011)Google Scholar
  10. 10.
    Kondratenko, Y.P., Sidenko, Ie.V.: Decision-making based on fuzzy estimation of quality level for cargo delivery. In: Zadeh, L.A., et al. (eds.) Recent Developments and New Directions in Soft Computing. Studies in Fuzziness and Soft Computing, vol. 317, pp. 331–344. Springer International Publishing, Switzerland (2014)Google Scholar
  11. 11.
    Altman, E.I., Marco, G., Varetto, F.: Corporate distress diagnosis: comparisons using linear discriminant analysis and neural networks. J. Bank. Finance 18, 505–529 (1994)CrossRefGoogle Scholar
  12. 12.
    Altman, E.I., Narayanan, P.: An international survey of business failure classification models. J Financial Markets Inst. Instrum. 6(2), 81–130 (1997)Google Scholar
  13. 13.
    Granger, C.W.J., Newbold, P.: Forecasting Economic Time Series. Academic Press (1986)Google Scholar
  14. 14.
    Hall, S.G.: Applied economic forecasting techniques. Harvester Wheatsheaf (1994)Google Scholar
  15. 15.
    Ryabushkin, B.T.: Application of Statistical Methods in an Economic Analysis and Prognostication. Finances and Statistics, Moscow (1987)Google Scholar
  16. 16.
    Trifonov, YuV, Plehanova, A.F., Yurlov, F.F.: Choice of Effective Decisions in an Economy in the Conditions of Vagueness. Publishing House NNGU, Nizhniy Novgorod (1998)Google Scholar
  17. 17.
    Połoński, M.: Prognozowanie czasu zakończenia inwestycji na podstawie jej bieżącego zaawansowania. J. Metody ilościowe w badaniach ekonomicznych, Tom XIII/3, pp. 169–179 (2012)Google Scholar
  18. 18.
    Prędki, A.: Subsampling approach for statistical inference within stochastic DEA models. J. Metody ilościowe w badaniach ekonomicznych XIV(2), 158–168 (2013)Google Scholar
  19. 19.
    Teyl, G.: Economy Prognosis and Making Decision. Statistics, Moscow (1971)Google Scholar
  20. 20.
    Szmuksta-Zawadzka, M., Zawadzki, J.: Modele harmoniczne ze złożoną sezonowością w prognozowaniu szeregów czasowych z lukami systematycznymi. J. Metody ilościowe w badaniach ekonomicznych, Tom XIV/3, 81–90 (2013)Google Scholar
  21. 21.
    Pugachev, V.S.: The Theory of Random Functions and its Application. Fitmatgiz, Moscow (1962)Google Scholar
  22. 22.
    Kudritsky, V.D.: Filtering, Extrapolation and Recognition Realizations of Random Functions. FADA Ltd., Kyiv (2001)Google Scholar
  23. 23.
    Shebanin, V., Atamanyuk, I., Kondratenko, Y.: Simulation of vector random sequences based on polynomial degree canonical decomposition. Eastern-Eur. J. Enterprise Technol. 5, 4(83), 4–12 (2016)Google Scholar
  24. 24.
    Sirenko, N.N.: Management of strategy innovative development of agrarian sector of economy of Ukraine. MNAU, Mykolaiv (2010)Google Scholar
  25. 25.
    Atamanyuk, I.P., Kondratenko, Y.P., Sirenko, N.N.: Forecasting economic indices of agricultural enterprises based on vector polynomial canonical expansion of random sequences. In: Ermolayev, V., et al. (eds.) Proceedings of the 12th International Conference on Information and Communication Technologies in Education, Research, and Industrial Application. Integration, Harmonization and Knowledge Transfer, 21–24 June, 2016, Kyiv, Ukraine, ICTERI’2016, CEUR-WS, vol. 1614, pp. 458–468 (2016)Google Scholar
  26. 26.
    Atamanyuk, I., Kondratenko, Y., Sirenko, N.: Management of an agricultural enterprise on the basis of its economic state forecasting. J. Metody ilościowe w badaniach ekonomicznych: Quant. Methods Econ. XV(2), 7–16 (2014)Google Scholar
  27. 27.
    Atamanyuk, I., Kondratenko, Y.: Calculation method for a computer’s diagnostics of cardiovascular diseases based on canonical decompositions of random sequences. ICT in education, research and industrial applications: integration, harmonization and knowledge transfer. In: Batsakis, S., et al. (eds.) Proceedings of the 11 International Conference ICTERI-2015, CEUR-WS, vol. 1356, pp. 108–120 (2015)Google Scholar
  28. 28.
    Atamanyuk, I.P.: Algorithm of extrapolation of a nonlinear random process on the basis of its canonical decomposition. J Cybern. Syst. Anal. 2, 131–138 (2005)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Atamanyuk, I.P., Kondratenko, V.Y., Kozlov, O.V., Kondratenko, Y.P.: The algorithm of optimal polynomial extrapolation of random processes. In: Engemann, K.J., Gil-Lafuente, A.M., Merigo, J.L. (eds.) Modeling and Simulation in Engineering, Economics and Management. International Conference MS 2012, New Rochelle, NY, USA, Proceedings. Lecture Notes in Business Information Processing, vol. 115, pp. 78–87. Springer (2012)Google Scholar
  30. 30.
    Atamanyuk, I.P.: Optimal polynomial extrapolation of realization of a random process with a filtration of measurement errors. J. Autom. Inf. Sci. (Begell House, USA) 41(8), 38–48 (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Igor Atamanyuk
    • 1
  • Yuriy Kondratenko
    • 2
  • Natalia Sirenko
    • 1
  1. 1.Mykolaiv National Agrarian UniversityMykolaivUkraine
  2. 2.Petro Mohyla Black Sea National UniversityMykolaivUkraine

Personalised recommendations