Stock Returns Forecast: An Examination By Means of Artificial Neural Networks

  • Martín Iglesias CarideEmail author
  • Aurelio F. Bariviera
  • Laura Lanzarini
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 125)


The validity of the Efficient Market Hypothesis has been under severe scrutiny since several decades. However, the evidence against it is not conclusive. Artificial Neural Networks provide a model-free means to analize the prediction power of past returns on current returns. This chapter analizes the predictability in the intraday Brazilian stock market using a backpropagation Artificial Neural Network. We selected 20 stocks from Bovespa index, according to different market capitalization, as a proxy for stock size. We find that predictability is related to capitalization. In particular, larger stocks are less predictable than smaller ones.


  1. 1.
    Ross, S.A.: Neoclassical finance. Princeton University Press, Princeton, N.J. (2005)Google Scholar
  2. 2.
    Fama, E.F.: J. Financ. 25(2), 383 (1970)CrossRefGoogle Scholar
  3. 3.
    Fama, E.F.: J. Financ. 46(5), 1575 (1991)CrossRefGoogle Scholar
  4. 4.
    Göçken, M., Özçalıcı, M., Boru, A., Dosdoǧru, A.T.: Expert Syst. Appl. 44, 320 (2016).
  5. 5.
    Qiu, M., Song, Y., Akagi, F.: Chaos. Solitons Fractals 85(1) (2016).
  6. 6.
    Lanzarini, L., Villa-Monte, A., Fernández-Bariviera, A., Jimbo-Santana, P.: Obtaining classification rules using LVQ+PSO: an application to credit risk, vol. 377. Springer, 2015.
  7. 7.
    Lanzarini, L., Villa Monte, A., Bariviera, A., Jimbo Santana, P.: Kybernetes 46(1), (2017) (in press)Google Scholar
  8. 8.
    Tkáč, M., Verner, R.: Applied Soft Computing 38(788), (2016).
  9. 9.
    Lanzarini, L., Iglesias Caride, J.M., Bariviera, A.F.: World Congress of International Fuzzy Systems Association 2011 and Asia Fuzzy Systems Society International Conference 2011, pp. 21–25 (2011)Google Scholar
  10. 10.
    Isasi Viñuela, P., Galván León, I.M.: Redes de neuronas artificiales. Un enfoque práctico. Pearson, Pentice Hall (2004)Google Scholar
  11. 11.
    Freeman, J.A., Skapura, D.M.: Neural networks, algorithms, applications, and programming techniques. Addison-Wesley Publishing Company (1991)Google Scholar
  12. 12.
    Gencay, R.: J. Int. Econ. 47(1), 91 (1999)CrossRefGoogle Scholar
  13. 13.
    Fernández-Rodríguez, F., González-Martel, C., Sosvilla-Rivero, S.: Econ. Let. 69(1), 89 (2000)CrossRefGoogle Scholar
  14. 14.
    Riedmiller, M., Braun, H.: IEEE International Conference on Neural Networks, pp. 586–591 (1993)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Martín Iglesias Caride
    • 1
    Email author
  • Aurelio F. Bariviera
    • 2
  • Laura Lanzarini
    • 3
  1. 1.Master Program in Data MiningUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Department of BusinessUniversitat Rovira i VirgiliTarragonaSpain
  3. 3.Instituto de Investigación en Informática LIDI, Facultad de InformáticaUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations