Companies’ Selection Methods for Inclusion in Sustainable Indices: A Fuzzy Approach

  • Vicente Liern
  • Blanca Pérez-Gladish
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 125)


Sustainability indices handle concepts which are both, of numerical and non-numerical nature. In this context, the use of Fuzzy Logic is highly useful as allows a more faithful representation of reality. Usually these indices follow a three-step process to define sustainable investment universes. First step consists of sustainability assessment. In the second step, assets are rated based on the previously assessed sustainability scores and finally, best assets are selected. This last step relies on the construction of a global score reflecting the performance of the assets in main sustainability dimensions. In this Chapter we are concerned with the third step of the selection process. We review the aggregation process used by sustainability indices to obtain overall sustainability scores and we propose the use of flexible aggregation operators for the obtaining of a global score describing the sustainability degree of a firm that takes into account the characteristics of the different dimensions to be aggregated. Assets are then ranked using this score from most to less sustainable. The proposed approach is be compared with the three-step selection process applied by Euronext in their selection process for inclusion of companies in the Euronext Vigeo family of sustainability indices.


Corporate social responsibility Corporate sustainability Sustainable responsible investment (SRI) Aggregation operators Induced ordered weighted geometric (IOWG) operator 


  1. 1.
    Brundtland, G.H.: Our Common Future. World Commission on Environment and Development, Brussels (1987)Google Scholar
  2. 2.
    Dyllick, T., Hockerts, K.: Beyond the business case for corporate sustainability. Bus. Strategy Environ. 11, 130–141 (2002)CrossRefGoogle Scholar
  3. 3.
    Eurosif: European SRI Study 2014. Eurosif (2014)
  4. 4.
    Gil Aluja, J.: Elements for a Theory of Decision in Uncertainty. Kluwer Academic Publishers, Boston (1999)CrossRefzbMATHGoogle Scholar
  5. 5.
    Ballestero, E., Pérez-Gladish, B., García-Bernabeu, A. (eds.): Socially Responsible Investment. In: A Multi-criteria Decision Making Approach. International Series in Operations Research & Management Science, 219, Springer (2015)Google Scholar
  6. 6.
    Gil Lafuente, A.M., Merigó, J.M.: Decision making techniques with similarity measures and OWA operators. Sort-Stat. Oper. Res. Trans. 81–102 (2012)Google Scholar
  7. 7.
    Kaufmann, A., Gil Aluja, J.: Técnicas Operativas de Gestión para el Tratamiento de la Incertidumbre. Hispano Europea, Barcelona (1987)Google Scholar
  8. 8.
    Gil Aluja, J.: Investment in Uncertainty. Kluwer Academic Publishers, Dordrecht (1998)zbMATHGoogle Scholar
  9. 9.
    Gil Aluja, J.: The Interactive Management of Human Resources in Uncertainty. Kluwer Academic Publishers, Dordrecht (1998)CrossRefzbMATHGoogle Scholar
  10. 10.
    Gil Aluja, J.: La gestión interactiva de los recursos humanos en la incertidumbre. CEURA, Madrid (1996)Google Scholar
  11. 11.
    Gil Aluja, J.: Aproximación metodológica a la optimización en la incertidumbre. In: Escudero, L.F., Cerdá, E., Alonso-Ayuso, A., Sala Garrido, R. (eds.) En: Optimización bajo incertidumbre Rect@, 2, 23–50 (2002)Google Scholar
  12. 12.
    Liern, V., Pérez-Gladish, B., Méndez-Rodríguez, P.: Measuring social responsibility: a multicriteria approach. In: Zopounidis, C., Doumpos, M. (eds.) Multiple Criteria Decision Making: Applications in Management and Engineering. Multicriteria Decision Making Book Series. Springer (in press) (2015)Google Scholar
  13. 13.
    Xu, Z.S., Da, Q.L.: The ordered weighted geometric averaging operators. Int. J. Intell. Syst. 17(7), 709–716 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Herrera, F., Herrera-Viedma, E., Chiclana, F.: A study of the origin and uses of the ordered weighted geometric operator in multicriteria decision making. Int. J. Intell. Syst. 18(6), 689–707 (2003)CrossRefzbMATHGoogle Scholar
  15. 15.
    Xu, Z.S.: On generalized induced linguistic aggregation operators. Int. J. Gen Syst 35(1), 17–28 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)CrossRefzbMATHGoogle Scholar
  17. 17.
    Yager, R.R., Filev, D.P.: Induced ordered weighted averaging operators. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 29, 141–150 (1999)CrossRefGoogle Scholar
  18. 18.
    Yager, R.R.: Induced aggregation operators. Fuzzy Sets Syst. 137(1), 59–69 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    León, T., Ramón, N., Ruiz, J.L., Sirvent, I.: Using induced ordered weighted averaging (IOWA) operators for aggregation in cross-efficiency evaluations. Int. J. Intell. Syst. 29, 1100–1126 (2014)CrossRefGoogle Scholar
  20. 20.
    Merigó, J.M., Gil Lafuente, A.M., Zhou, L.G., Chen, H.Y.: Induced and linguistic generalized aggregation operators and their application in linguistic group decision making. Group Decis. Negot. Springer, Holland (2012)Google Scholar
  21. 21.
    Wang, Y.M., Parkan, C.: A minimax disparity approach for obtaining OWA operator weights. Inf. Sci. 175(1–2), 20–29 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Dpto. Matemáticas para la Economía y la EmpresaUniversitat de ValènciaValenciaSpain
  2. 2.Dpto. Economía CuantitativaUniversidad de OviedoOviedoSpain

Personalised recommendations