Comparison of Type-2 Fuzzy Integration for Optimized Modular Neural Networks Applied to Human Recognition

  • Daniela Sánchez
  • Patricia Melin
  • Oscar Castillo
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 125)


In this paper optimization techniques for Modular Neural Networks (MNNs) and their combination with a granular approach is presented. A Firefly Algorithm (FA) and a Grey Wolf Optimizer (GWO) are developed to perform modular neural networks (MNN) optimization. These algorithms perform the optimization of some parameters of MNN such as; number of sub modules, percentage of information for the training phase and number of hidden layers (with their respective number of neurons) for each sub module and learning algorithm. The modular neural networks are applied to human recognition based on face, iris, ear and voice. The minimization of the error of recognition is the objective function. To combine the responses of the modular neural networks different type-2 fuzzy inference system are proposed and a comparison of results is performed.


  1. 1.
    Amezcua, J., Melin, P.: Optimization of the LVQ network architecture with a modular approach for arrhythmia classification using PSO. Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization 2015, pp. 119–126 (2015)Google Scholar
  2. 2.
    Azamm, F.: Biologically inspired modular neural networks. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, May 2000Google Scholar
  3. 3.
    Bargiela, A., Pedrycz, W.: The roots of granular computing. In: IEEE International Conference on Granular Computing (GrC), 2006, pp 806–809Google Scholar
  4. 4.
    Castillo, O., Melin, P., Alanis, Garza A., Montiel, O., Sepúlveda, R.: Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms. Soft. Comput. 15(6), 1145–1160 (2011)CrossRefGoogle Scholar
  5. 5.
    Castillo, O., Melin, P.: Type-2 Fuzzy Logic Theory and Applications, pp. 29–43. Springer, Berlin (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    Castillo, O., Melin, P.: Soft Computing for Control of Non-linear Dynamical Systems. Springer, Heidelberg, Germany (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Database Ear Recognition Laboratory from the University of Science & Technology Beijing (USTB). Accessed 21 Sep 2009
  8. 8.
    Database of Face. Institute of Automation of Chinese Academy of Sciences (CASIA). Accessed 11 Nov 2012
  9. 9.
    Database of Human Iris. Institute of Automation of Chinese Academy of Sciences (CASIA). Accessed 21 Sep 2009
  10. 10.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1, 53–66 (1997)CrossRefGoogle Scholar
  11. 11.
    Funes, E., Allouche, Y., Beltrán, G., Jiménez, A.: A review: artificial neural networks as tool for control food industry process. J. Sens. Technol. 5, 28–43 (2015)CrossRefGoogle Scholar
  12. 12.
    Gaxiola, F., Melin, P., Valdez, F., Castro, J.R., Castillo, O.: Optimization of type-2 fuzzy weights in backpropagation learning for neural networks using GAs and PSO. Appl. Soft Comput. 38, 860–871 (2016)CrossRefGoogle Scholar
  13. 13.
    Geem, Z., Yang, X., Tseng, C.: Harmony search and nature-inspired algorithms for engineering optimization. J. Appl. Math. 438158:1–438158:2 (2013)Google Scholar
  14. 14.
    Hidalgo, D., Castillo, O., Melin, P.: Type-1 and type-2 fuzzy inference systems as integration methods in modular neural networks for multimodal biometry and its optimization with genetic algorithms. Inf. Sci. 179(13), 2123–2145 (2009)CrossRefGoogle Scholar
  15. 15.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, MI (1975)Google Scholar
  16. 16.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE international Joint Conference on Neuronal Networks, pp. 1942–1948. IEEE Press (1995)Google Scholar
  17. 17.
    Khan, A., Bandopadhyaya, T., Sharma, S.: Classification of stocks using self organizing map. Int. J. Soft Comput. Appl. 4, 19–24 (2009)Google Scholar
  18. 18.
    Martínez-Soto, R., Castillo, O., Aguilar, L., Rodríguez Díaz, A.: A hybrid optimization method with PSO and GA to automatically design type-1 and type-2 fuzzy logic controllers. Int. J. Mach. Learn. Cybernet. 6(2), 175–196 (2015)CrossRefGoogle Scholar
  19. 19.
    Mech, L.D.: Alpha status, dominance, and division of labor in wolf packs. Can. J. Zool. 77, 1196–1203 (1999)CrossRefGoogle Scholar
  20. 20.
    Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)CrossRefGoogle Scholar
  21. 21.
    Muro, C., Escobedo, R., Spector, L., Coppinger, R.: Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behav. Proc. 88, 192–197 (2011)CrossRefGoogle Scholar
  22. 22.
    Nawi, N.M., Khan, A., Rehman, M.Z.: A new back-propagation neural network optimized with cuckoo search algorithm. In: ICCSA 2013, Part I, LNCS 7971, pp. 413–426 (2013)Google Scholar
  23. 23.
    Okamura, M., Kikuchi, H., Yager, R., Nakanishi, S.: Character diagnosis of fuzzy systems by genetic algorithm and fuzzy inference. In: Proceedings of the Vietnam-Japan Bilateral Symposium on Fuzzy Systems and Applications, Halong Bay, Vietnam 1998, pp. 468–473Google Scholar
  24. 24.
    Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)CrossRefzbMATHGoogle Scholar
  25. 25.
    Saravanan, K., Sasithra, S.: Review on classification based on artificial neural networks. Int. J. Amb. Syst. Appl. (IJASA) 2(4), 11–18 (2014)Google Scholar
  26. 26.
    Yang, X.S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (Eds.) Proceedings of 5th Symposium on Stochastic Algorithms, foundations and applications, Lecture Notes in Computer Science, vol. 5792, pp. 169–178 (2009)Google Scholar
  27. 27.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, UK (2008)Google Scholar
  28. 28.
    Yang, X.S., He, X.: Firefly algorithm: recent advances and applications. Int. J. Swarm Intell. 1(1), 36–50 (2013)CrossRefGoogle Scholar
  29. 29.
    Yang, X.: Bat algorithm: literature review and applications. Int. J. Bio-Insp. Comput. 5(3), 141–149 (2013)CrossRefGoogle Scholar
  30. 30.
    Yao, J.T.: A ten-year review of granular computing. In: Proceedings of the 3rd IEEE International Conference on Granular Computing (GrC), pp. 734–739 (2007)Google Scholar
  31. 31.
    Yao, Y.Y.: Granular computing: basic issues and possible solutions. In: Proceedings of the 5th Joint Conferences on Information Sciences, pp. 186–189 (2000)Google Scholar
  32. 32.
    Yu, F., Pedrycz, W.: The design of fuzzy information granules: tradeoffs between specificity and experimental evidence. Appl. Soft Comput. 9(1), 264–273 (2009)CrossRefGoogle Scholar
  33. 33.
    Zadeh, L.A.: Fuzzy sets. J. Inf. Control 8, 338–353 (1965)CrossRefzbMATHGoogle Scholar
  34. 34.
    Zhang, Z., Zhang, C.: An agent-based hybrid intelligent system for financial investment planning. In: 7th Pacific Rim International Conference on Artificial Intelligence (PRICAI), pp. 355–364 (2002)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Daniela Sánchez
    • 1
  • Patricia Melin
    • 1
  • Oscar Castillo
    • 1
  1. 1.Tijuana Institute of TechnologyTijuanaMexico

Personalised recommendations