Mathematical Model and Parametrical Identification of Ecopyrogenesis Plant Based on Soft Computing Techniques

  • Yuriy P. Kondratenko
  • Oleksiy V. Kozlov
  • Galyna V. Kondratenko
  • Igor P. Atamanyuk
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 125)


This paper presents the development of the mathematical model and system of parametrical identification for the ecopyrogenesis (EPG) plant as a complex multi-coordinate control object on the basis of soft computing techniques. The synthesis procedure of the main parts of the EPG plant’s mathematical model, including its fuzzy parametrical identification system, adaptive-network-based fuzzy inference system for calculating of multiloop circulatory system (MCS) temperature and Mamdani type fuzzy inference system for calculating of reactor load level, is presented. The analysis of computer simulation results in the form of static and dynamic characteristics graphs of the EPG plant confirms the high adequacy of the developed complex neuro-fuzzy model to the real processes. The developed mathematical model with parametrical identification based on neuro-fuzzy technologies gives the opportunity to investigate the behavior of the given complex control object in steady and transient modes, in particular, to synthesize and adjust the intelligent controllers of the multi-coordinate automatic control system of the EPG plant.


  1. 1.
    Markina, L.M.: Development of new energy-saving and environmental safety technology at the organic waste disposal by ecopyrogenesis. J. Collected Works NUS 4, 8 (2011). (in Ukrainian)Google Scholar
  2. 2.
    Kondratenko, Y.P., Kozlov, O.V.: Computerized Monitoring and Control System for Ecopyrogenesis Technological Complex. Tribuna Plural: La revista cientifica 1, Barcelona: Reial Academia de Doctors, pp. 223–255 (2014)Google Scholar
  3. 3.
    Fiss, D., Wagenknecht, M., Hampel, R.: Modeling a Boiling Process Under Uncertainties. 19th Zittau Fuzzy Colloquium, Proceedings of East-West Fuzzy Colloquium 2012, Zittau, Hochschule Zittau/Goerlitz, Germany, pp. 141–146 (2012)Google Scholar
  4. 4.
    Han, Z.X., Yan, C.H., Zhang, Z.: Study on robust control system of boiler steam temperature and analysis on its stability. J. Zhongguo Dianji Gongcheng Xuebao Proc. Chinese Soc. Elect. Eng. 30(8), 101–109 (2010)Google Scholar
  5. 5.
    Xiao, Z., Guo, J., Zeng, H., Zhou, P., Wang, S.: Application of fuzzy neural network controller in hydropower generator unit. J. Kybernetes 38(10), 1709–1717 (2009)CrossRefzbMATHGoogle Scholar
  6. 6.
    Chaikin, B.S., Mar’yanchik, G.E., Panov, E.M., Shaposhnikov, P.T., Vladimirov, V.A., Volovik, I.S., Makarevich, B.A.: State-of-the-art plants for drying and high-temperature heating of ladles. Int. J. Refract. Indust. Ceramics 47(5), 283–287 (2006)Google Scholar
  7. 7.
    Štemberk, P., Lanska, N.: Heating System for Curing Concrete Specimens under Prescribed Temperature. In: 13th Zittau Fuzzy Collquium, Proceedings of East-West Fuzzy Colloquium 2006, Zittau, Hochschule Zittau/Goerlitz, Germany, pp. 82–88 (2006)Google Scholar
  8. 8.
    Skrjanc, I.: Design of fuzzy model-based predictive control for a continuous stirred-tank reactor. 12th Zittau Fuzzy Colloquium, Proceedings of East-West Fuzzy Colloquium 2005, Zittau, Hochschule Zittau/Goerlitz, Germany, pp. 126–139 (2005)Google Scholar
  9. 9.
    Himmelblau, D.: Applied Nonlinear Programming. Translated from English. a. ed. by of Bihovckiy, M.L., Mir, M. 534 (1974) (in Russian)Google Scholar
  10. 10.
    Atamanyuk, I.P., Kondratenko, V.Y., Kozlov, O.V., Kondratenko, Y.P.: The Algorithm of optimal polynomial extrapolation of random processes. In: Modeling and Simulation in Engineering, Economics and Management. Engemann, K.J., Gil-Lafuente, A.M., Merigo, J L. (Eds.), International Conference MS 2012, New Rochelle, NY, USA, Proceedings. Lecture Notes in Business Information Processing 115, Springer, pp. 78–87 (2012)Google Scholar
  11. 11.
    Drozd, J., Drozd, A.: Models, methods and means as resources for solving challenges in co-design and testing of computer systems and their components. In: Proceedings of 9th International Conference on Digital Technologies 2013, Zhilina, Slovak Republic, pp. 225–230 (2013)Google Scholar
  12. 12.
    Tkachenko, A.N., Brovinskaya, N.M., Kondratenko, Y.P.: Evolutionary adaptation of control processes in robots operating in non-stationary environments. J. Mech. Mach. Theor. Printed in Great Britain, 18 (4), 275–278 (1983)Google Scholar
  13. 13.
    Gerdt, V.P., Prokopenya, A.N.: Simulation of quantum error correction with Mathematica. In: Computer Algebra in Scientific Computing/ CASC’2013, Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E. V. (Eds.), Lecture Notes in Computer Science 8136, Springer-Verlag, Berlin, pp. 116—129 (2013)Google Scholar
  14. 14.
    Drozd, J., Drozd, A., Zashcholkin, K., Antonyuk, V., Kuznetsov, N., Kalinichenko, V., A: Concept of computing based on resources development analysis. In: Proceedings of IEEE East-West Design & Test Symposium, Rostov-on-Don, Russia, pp. 102–107 (2013)Google Scholar
  15. 15.
    Palagin, A.V., Opanasenko, V.N.: Reconfigurable-computing technology. Cybernet. Syst. Anal. 43(5), 675–686 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Trunov, A.N.: An adequacy criterion in evaluating the effectiveness of a model design process. East. Eur. J. Enterprise Technol. 1, 4 (73), 36–41 (2015)Google Scholar
  17. 17.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefzbMATHGoogle Scholar
  18. 18.
    Gil-Aluja, J.: Investment in Uncertainty. Kluwer Academic Publishers, Dordrecht, Boston, London (1999)CrossRefzbMATHGoogle Scholar
  19. 19.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybernet. 15 (1) (1985)Google Scholar
  20. 20.
    Zimmermann, H.-J.: Fuzzy Set Theory—and Its Applications. Kluwer Academic Publishers, Boston/Dordrecht/London (1992)Google Scholar
  21. 21.
    Jamshidi, M., Vadiee, N., Ross, T.J. (eds.): Fuzzy Logic and Control: Software and Hardware Application. Prentice Hall Series on Environmental and Intelligent Manufacturing Systems 2, M. Jamshidi (ed.), Prentice Hall, Englewood Cliffs, NJ (1993)Google Scholar
  22. 22.
    Zadeh, L.A.: The role of fuzzy logic in modeling, identification and control. Model. Identific. Control 15(3), 191–203 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Yager, R.R., Filev, D.P.: Essentials of Fuzzy Modeling and Control. Wiley, New York, NY (1994)Google Scholar
  24. 24.
    Hampel, R., Wagenknecht, M., Chaker, N.: Fuzzy Control: Theory and Practice. Physika-Verlag, Heidelberg, New York (2000)CrossRefzbMATHGoogle Scholar
  25. 25.
    Piegat, A.: Fuzzy Modeling and Control. Physica-Verlag, Heidelberg, New York (2001)CrossRefzbMATHGoogle Scholar
  26. 26.
    Yager, R.R., Filev, D. P.: Unified structure and parameter identification of fuzzy models. Syst. Man Cybernet. 23 (4) (1993)Google Scholar
  27. 27.
    Lodwick, W.A., Kacprzhyk, J. (Eds): Fuzzy Optimization. Studies in Fuzziness and Soft Computing 254, Springer-Verlag, Berlin, Heidelberg (2010)Google Scholar
  28. 28.
    Kondratenko, Y.P., Kondratenko, N.Y.: Reduced library of the soft computing analytic models for arithmetic perations with fuzzy numbers. In: Soft Computing: Developments, Methods and Applications, Alan Case (Ed), Series: Computer Science, technology and applications, NOVA Science Publishers, Hauppauge, New York, pp. 1–38 (2016)Google Scholar
  29. 29.
    Kondratenko, Y., Kondratenko, V.: Soft computing algorithm for arithmetic multiplication of fuzzy sets based on universal analytic models. In: Information and Communication Technologies in Education, Research, and Industrial Application. Communications in Computer and Information Science 469, Ermolayev, V. et al. (Eds.): ICTERI’2014, Springer International Publishing Switzerland, pp. 49–77 (2014)Google Scholar
  30. 30.
    Simon, D.: Training fuzzy systems with the extended Kalman filter. Fuzzy Sets Syst. 132, 189–199 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Gil-Aluja, J., Gil-Lafuente, A.M., Klimova, A.: The optimization of the economic segmentation by means of fuzzy algorithms. J. Comput. Optim. Econom. Finance 1(3), 169–186 (2011)Google Scholar
  32. 32.
    Shebanin, V., Atamanyuk, I., Kondratenko, Y., Volosyuk Y.: Application of fuzzy predicates and quantifiers by matrix presentation in informational resources modeling. Perspective Technologies and Methods in MEMS Design: Proceedings of the International Conference MEMSTECH-2016 Lviv-Poljana, Ukraine, pp. 146–149 (2016)Google Scholar
  33. 33.
    Kondratenko, Y.P., Klymenko, L.P., Al Zu’bi, E.Y.M.: Structural optimization of fuzzy systems’ rules base and aggregation models. Kybernetes 42(5), 831–843 (2013)CrossRefGoogle Scholar
  34. 34.
    Kondratenko, Y.P., Altameem, T.A., Al Zubi, E.Y.M.: The optimisation of digital controllers for fuzzy systems design. Advanc. Model. Anal. AMSE Period. A 47(1–2), 19–29 (2010)Google Scholar
  35. 35.
    Kondratenko, Y.P., Al Zubi, E.Y.M.: The optimisation approach for increasing efficiency of digital fuzzy controllers. Annals of DAAAM for 2009 & Proceeding of the 20th International DAAAM Symposium. Intelligent Manufacturing and Automation, Published by DAAAM International, Vienna, Austria, pp. 1589–1591 (2009)Google Scholar
  36. 36.
    Kondratenko, Y.P.: Robotics, automation and information systems: future perspectives and correlation with culture, sport and life science. In book: Decision Making and Knowledge Decision Support Systems. Lecture Notes in Economics and Mathematical Systems 675, Gil-Lafuente, A.M., Zopounidis, C. (Eds), Springer International Publishing Switzerland, pp. 43–56 (2015)Google Scholar
  37. 37.
    Kauffman, A., Gil-Aluja, J.: Introduction of fuzzy sets theory to management of enterprises. Minsk, Higher School (1992). (in Russian)Google Scholar
  38. 38.
    Gil-Aluja, J.: Elements for a theory of decision in uncertainty. Springer Science & Business Media vol. 32 (1999)Google Scholar
  39. 39.
    Gil-Aluja, J.: Fuzzy sets in the management of uncertainty. Springer Science & Business Media vol. 145 (2004)Google Scholar
  40. 40.
    Gil-Aluja, J.: The interactive management of human resources in uncertainty. Springer Science & Business Media vol. 11 (2013)Google Scholar
  41. 41.
    Merigo, J.M., Gil-Lafuente, A.M., Gil-Aluja, J.: Decision making with the induced generalized adequacy coefficient. Appl. Comput. Math. 2(2), 321–339 (2011)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Gil-Aluja, J.: Handbook of management under uncertainty. Springer Science & Business Media vol. 55 (2013)Google Scholar
  43. 43.
    Gil-Aluja, J., Gil-Lafuente, A.M., Klimova, A.: The optimization of the economic segmentation by means of fuzzy algorithms. J. Comput. Optim. Econom. Finance 1 (3), Nova Science Publishers, 169–186 (2008)Google Scholar
  44. 44.
    Werners, B., Kondratenko, Y.P.: Tanker routing problem with fuzzy demands of served ships. Int. J. Syst. Res. Informat. Technol. 1, 47–64 (2009)Google Scholar
  45. 45.
    Kondratenko, Y.P., Sidenko, Ie. V.: Decision-making based on fuzzy estimation of quality level for cargo delivery. In book: Recent Developments and New Directions in Soft Computing. Studies in Fuzziness and Soft Computing 317, Zadeh, L.A. et al. (Eds), Springer International Publishing Switzerland, pp. 331–344 (2014)Google Scholar
  46. 46.
    Kondratenko, G.V., Kondratenko, Y.P., Romanov, D.O.: Fuzzy Models for Capacitive Vehicle Routing Problem in Uncertainty. In: Proceedings of 17th International DAAAM Symposium Intelligent Manufacturing and Automation: Focus on Mechatronics & Robotics, Vienna, Austria, pp. 205–206 (2006)Google Scholar
  47. 47.
    Werners, B., Kondratenko, Y.P.: Fuzzy multi-criteria optimization for vehicle routing with capacity constraints and uncertain demands. In: Proceedings of the International Congress on Cost Control, Publ. by ACCID/ASEPUC, Barcelona, Spain, pp. 145–159 (2011)Google Scholar
  48. 48.
    Kondratenko, Y.P., Encheva, S.B., Sidenko, E.V.: Synthesis of intelligent decision support systems for transport logistic. In: Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications 2, IDAACS’2011, Prague, Czech Republic, pp. 642–646 (2011)Google Scholar
  49. 49.
    Gil-Lafuente, A.M.: Fuzzy Logic in Financial Analysis. Studies in Fuzziness and Soft Computing vol. 175, Springer, Berlin (2005)Google Scholar
  50. 50.
    Merigó, J.M., Gil-Lafuente, A.M., Gil-Aluja, J.: A new aggregation method for strategic decision making and its application in assignment theory. Afr. J. Bus. Manag. 5(11), 4033–4043 (2011)zbMATHGoogle Scholar
  51. 51.
    Gil-Aluja, J., Gil-Lafuente, A.M., Merigó, J.M.: Using homogeneous groupings in portfolio management. Expert Syst. Appl. 38(9), 10950–10958 (2011)CrossRefGoogle Scholar
  52. 52.
    Butenko, S., Gil-Lafuente, J., Pardalos, P.M. (eds.): Optimal Strategies in Sports Economics and Management. Springer-Vertag, Heidelberg, Dordrecht, London, New York (2010)Google Scholar
  53. 53.
    Gil Aluja, J. (ed.): Les Universitats En El Centenari Del Futbol Club Barcelona. Estudis En L’Ambit De L’Esport, Proleg, Josef Lluis Nunez (1999)Google Scholar
  54. 54.
    Gil-Lafuente, A.M., Merigo, J.M.: Decision making techniques in political management. In book: Fuzzy Optimization. In: Studies in Fuzziness and Soft Computing vol. 254, Lodwick, W.A., Kacprzhyk, J. (Eds), Springer, Berlin, Heidelberg, pp. 389–405 (2010)Google Scholar
  55. 55.
    Kacprzyk, J., Yager, R.R., Zadrożny, S.: A fuzzy logic based approach to linguistic summaries of databases. Int. J. Appl. Math. Comput. Sci. 10(4), 813–834 (2000)zbMATHGoogle Scholar
  56. 56.
    Oh, S.K., Pedrycz, W.: The design of hybrid fuzzy controllers based on genetic algorithms and estimation techniques. J. Kybernetes 31(6), 909–917 (2002)CrossRefGoogle Scholar
  57. 57.
    Suna, Q., Li, R., Zhang, P.: Stable and optimal adaptive fuzzy control of complex systems using fuzzy dynamic model. J. Fuzzy Sets Syst. 133, 1–17 (2003)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Vachkov, G., Kiyota, Y., Komatsu, K.: Identification of dynamic cause-effect relations for systems performance evaluation. Appl. Sci. Soft Comput. Advan. Soft Comput. 24, 187–194 (2004)Google Scholar
  59. 59.
    Hayajneh, M.T., Radaideh, S.M., Smadi, I.A.: Fuzzy logic controller for overhead cranes. Eng. Comput. 23(1), 84–98 (2006)CrossRefzbMATHGoogle Scholar
  60. 60.
    Wang, L., Kazmierski, T.J.: VHDL-AMS based genetic optimization of fuzzy logic controllers. Int. J. Comput. Math. Elect. Electron. Eng. 26(2), 447–460 (2007)CrossRefzbMATHGoogle Scholar
  61. 61.
    Ho, G.T.S., Lau, H.C.W., Chung, S.H., Fung, R.Y.K., Chan, T.M., Lee, C.K.M.: Fuzzy rule sets for enhancing performance in a supply chain network. Indust. Manag. Data Syst. 108(7), 947–972 (2008)CrossRefGoogle Scholar
  62. 62.
    Kondratenko, Y.P., Kozlov, O. V.: Fuzzy Controllers in Reactors Control Systems of Multiloop Pyrolysis Plants. 19th Zittau Fuzzy Colloquium, Proceedings of East-West Fuzzy Colloquium 2012, Zittau, Hochschule Zittau/Goerlitz, Germany, 15–22 (2012)Google Scholar
  63. 63.
    Rotach, V. Y.: Automatic Control Theory of Heat and Power Processes: M, Energoatomizdat, 296 (1985). (in Russian)Google Scholar
  64. 64.
    Kondratenko, Y. P., Kozlov, O. V.: Mathematical Model of Ecopyrogenesis Reactor with Fuzzy Parametrical Identification. In: Recent Developments and New Direction in Soft-Computing Foundations and Applications. Studies in Fuzziness and Soft Computing 342. Lotfi A. Zadeh et al. (Eds.). Berlin, Heidelberg: Springer, pp. 439–451 (2016)Google Scholar
  65. 65.
    Kondratenko, Y. P., Kozlov, O. V.: Mathematic Modeling of Reactor’s Temperature Mode of Multiloop Pyrolysis Plant. Lecture Notes in Business Information Processing: Modeling and Simulation in Engineering, Economics and Management 115, K. J. Engemann, A. M. Gil-Lafuente, J. M. Merigo (Eds.), Berlin, Heidelberg: Springer, pp. 178–187 (2012)Google Scholar
  66. 66.
    Kondratenko, Y. P., Kozlov, O. V., Klymenko, L. P., Kondratenko, G.V.: Synthesis and Research of Neuro-Fuzzy Model of Ecopyrogenesis Multi-circuit Circulatory System. Advance Trends in Soft Computing, Studies in Fuzziness and Soft Computing 312, Berlin, Heidelberg: Springer, pp. 1–14 (2014)Google Scholar
  67. 67.
    Jang, J.-S.R.: ANFIS: Adaptive-Network-based Fuzzy Inference Systems. IEEE Transactions on Systems, Man, and Cybernetics 23(3), 665–685 (1993)CrossRefGoogle Scholar
  68. 68.
    Jang, J.-S. R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall (1996)Google Scholar
  69. 69.
    Dimirovski, G. M., Lokevenc, I. I., Tanevska, D. J.: Applied Adaptive Fuzzy-neural Inference Models: Complexity and Integrity Problems. Intelligent Systems, Proceedings of 2nd International IEEE Conference 1 (22–24), 45–52 (2004)Google Scholar
  70. 70.
    Kondratenko, Y. P., Kozlov, O. V., Atamanyuk, I. P., Korobko, O. V.: Computerized Control System for the Pyrolysis Reactor Load Level Based on the Neural Network Controllers. Computing in Science and Technology 2012/2013, T. Kwater, B. Twarog (Eds.), Monographs in Applied Informatics, Wydawnictwo Uniwersytety Rzeszowskiego, Rzeszow, Poland, 97–120 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Yuriy P. Kondratenko
    • 1
    • 2
  • Oleksiy V. Kozlov
    • 2
  • Galyna V. Kondratenko
    • 1
    • 2
  • Igor P. Atamanyuk
    • 3
  1. 1.Petro Mohyla Black Sea State UniversityMykolaivUkraine
  2. 2.Admiral Makarov National University of ShipbuildingMykolaivUkraine
  3. 3.Mykolaiv National Agrarian UniversityMykolaivUkraine

Personalised recommendations