The Soft Consensus Model in the Multidistance Framework

  • Silvia Bortot
  • Mario Fedrizzi
  • Michele Fedrizzi
  • Ricardo Alberto Marques Pereira
  • Thuy Hong Nguyen
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 125)


In the context of the soft consensus model due to (Fedrizzi et al. in Journal international journal of intelligent systems 14:63–77, 1999) [27], (Fedrizzi et al. in New mathematics and natural computation 3:219–237, 2007) [28], (Fedrizzi et al. in Preferences and Decisions: models and applications, studies in fuzziness and soft computing Springer, Heidelberg, pp. 159–182, 2010) [30], we investigate the reformulation of the soft dissensus measure in relation with the notion of multidistance, recently introduced by Martín and Mayor (Information processing and management of uncertainty in knowledge-based systems. Theory and methods, communications in computer and information science, springer, heidelberg, pp. 703–711 2010) [43], Martín and Mayor (Fuzzy sets and systems 167:92–100 2011) [44]. The concept of multidistance is as an extension of the classical concept of binary distance, obtained by means of a generalization of the triangular inequality. The new soft dissensus measure introduced in this paper is a particular form of sum-based multidistance. This multidistance is constructed on the basis of a binary distance defined by means of a subadditive scaling function, whose role is that of emphasizing small distances and attenuating large distances in preferences. We present a detailed study of the subadditive scaling function, which is analogous but not equivalent to the one used in the traditional form of the soft consensus model.


Multidistances Dissensus measures Soft consensus model 


  1. 1.
    Alonso, S., Pérez, I.J., Cabrerizo, F.J., Herrera-Viedma, E.: A linguistic consensus model for Web 2.0 communities. Appl. Soft Comput. 13, 149–157 (2013)CrossRefGoogle Scholar
  2. 2.
    Beliakov, G., Bustince Sola, H., Calvo, T.: A practical guide to averaging functions, studies in fuzziness and soft computing, vol. 329. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  3. 3.
    Beliakov, G., Calvo, T., James, S.: Consensus measures constructed from aggregation functions and fuzzy implications. Knowl.-Based Syst. 55, 1–8 (2014)CrossRefGoogle Scholar
  4. 4.
    Beliakov, G., Gagolewski, M., James, S.: Penalty-based and other representations of economic inequality. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 24(1), 1–23 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Beliakov, G., James, S.: Unifying approaches to consensus across different preference representations. Appl. Soft Comput. 35, 888–897 (2015)CrossRefGoogle Scholar
  6. 6.
    Beliakov, G., James, S., Wilkin, T.: Aggregation and consensus for preference relations based on fuzzy partial orders. Fuzzy Opti. Decis. Making (online since 23 November 2016)Google Scholar
  7. 7.
    Beliakov, G., Pradera, A., Calvo, T.: Aggregation functions: a guide for practitioners, studies in fuzziness and soft computing, vol. 221. Springer, Heidelberg (2007)Google Scholar
  8. 8.
    Ben-Arieh, D., Chen, Z.: Linguistic group decision-making: opinion aggregation and measures of consensus. Fuzzy Optim. Decis. Making 5(4), 371–386 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ben-Arieh, D., Chen, Z.: Linguistic-labels aggregation and consensus measure for autocratic decision making using group recommendations. IEEE Trans. Syst. Man Cybern. 36(3), 558–568 (2006)CrossRefGoogle Scholar
  10. 10.
    Ben-Arieh, D., Easton, T.: Multi-criteria group consensus under linear cost opinion elasticity. Decis. Support Syst. 43(3), 713–721 (2007)CrossRefGoogle Scholar
  11. 11.
    Ben-Arieh, D., Easton, T., Evans, B.: Minimum cost consensus with quadratic cost functions. IEEE Trans. Syst. Man Cybern. 39(1), 210–217 (2008)CrossRefGoogle Scholar
  12. 12.
    Bortot, S., Fedrizzi, M., Fedrizzi, M., Marques Pereira, R.A.: A multidistance approach to consensus modeling. In: Collan, M., Fedrizzi, M., Kacprzyk, J. (eds.) Fuzzy Technol. Stud. Fuzziness Soft Comput. vol. 335, pp. 103–114. Springer, Heidelberg (2016)Google Scholar
  13. 13.
    Brunelli, M., Fedrizzi, M.: A fuzzy approach to social network analysis. In: 2009 International Conference on Advances in Social Network Analysis and Mining, pp. 225–230. IEEE Computer Society (2009)Google Scholar
  14. 14.
    Brunelli, M., Fedrizzi, M., Fedrizzi, M.: OWA-based fuzzy m-ary adjacency relations in social network analysis. In: Yager, R.R., Kacprzyk, J., Beliakov, G. (eds.) Recent Developments in the Ordered Weighted Averaging Operators: Theory and Practice, Studies in Fuzziness and Soft Computing, vol. 265, pp. 255–267. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Brunelli, M., Fedrizzi, M., Fedrizzi, M.: Fuzzy m-ary adjacency relations in social network analysis: optimization and consensus evaluation. Inf. Fusion 17, 36–45 (2014)CrossRefGoogle Scholar
  16. 16.
    Brunelli, M., Fedrizzi, M., Fedrizzi, M., Molinari, F.: On some connections between multidistances and valued m-ary adjacency relations. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) Advances in Computational Intelligence, Communications in Computer and Information Science, vol. 297, pp. 201–207. Springer, Heidelberg (2012)Google Scholar
  17. 17.
    Bustince, H., Barrenechea, E., Calvo, T., James, S., Beliakov, G.: Consensus in multi-expert decision making problems using penalty functions defined over a Cartesian product of lattices. Inf. Fusion 17, 56–64 (2014)CrossRefGoogle Scholar
  18. 18.
    Bustince, H., Beliakov, G., Pereira Dimuro, G., Bedregal, B., Mesiar, R.: On the definition of penalty functions in data aggregation. Fuzzy Sets and Syst. (online since 21 September 2016)Google Scholar
  19. 19.
    Cabrerizo, F.J., Moreno, J.M., Pérez, I.J., Herrera-Viedma, E.: Analyzing consensus approaches in fuzzy group decision making: advantages and drawbacks. Soft Comput. 14(5), 451–463 (2010)CrossRefGoogle Scholar
  20. 20.
    Calvo, T., Beliakov, G.: Aggregation functions based on penalties. Fuzzy sets and Syst. 161(10), 1420–1436 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Calvo, T., Kolesárová, A., Komorníková, M., Mesiar, R.: Aggregation operators: properties, classes and construction methods. In: Calvo, T., Mayor, M., Mesiar, R. (eds.) Aggregation operators: new trends and applications, studies in fuzziness and soft computing, vol. 97, pp. 3–104. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Calvo, T., Martín, J., Mayor, G.: Measures of disagreement and aggregation of preferences based on multidistances. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) Advances in Computational Intelligence, Communications in Computer and Information Science, vol. 300, pp. 549–558. Springer, Heidelberg (2012)Google Scholar
  23. 23.
    Chen, Z., Ben-Arieh, D.: On the fusion of multi-granularity linguistic label sets in group decision making. Comput. Ind. Eng. 51, 526–541 (2006)CrossRefGoogle Scholar
  24. 24.
    Chiclana, F., Tapia García, J.M., del Moral, M., Herrera-Viedma, E.: A statistical comparative study of different similarity measures of consensus in group decision making. Inf. Sci. 221, 110–123 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Contreras, I.: A distance-based consensus model with flexible choice of rank-position weights. Group Decis. Negot. 19(5), 441–456 (2010)CrossRefGoogle Scholar
  26. 26.
    Cook, W.D.: Distance-based and ad hoc consensus models in ordinal preference ranking. Eur. J. Oper. Res. 172(2), 369–385 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Fedrizzi, M., Fedrizzi, M., Marques Pereira, R.A.: Soft consensus and network dynamics in group decision making. Int. J. Intel. Syst. 14(1), 63–77 (1999)CrossRefzbMATHGoogle Scholar
  28. 28.
    Fedrizzi, M., Fedrizzi, M., Marques Pereira, R.A.: Consensus modelling in group decision making: dynamical approach based on fuzzy preferences. New Math. Nat. Comput. 3(2), 219–237 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Fedrizzi, M., Fedrizzi, M., Marques Pereira, R.A., Brunelli, M.: Consensual dynamics in group decision making with triangular fuzzy numbers. In: 41st Annual Hawaii International Conference on System Sciences, pp. 70–78. IEEE Computer Society (2008)Google Scholar
  30. 30.
    Fedrizzi, M., Fedrizzi, M., Marques Pereira, R.A., Brunelli, M.: The dynamics of consensus in group decision making: investigating the pairwise interactions between fuzzy preferences. In: Greco, S., Marques Pereira, R.A., Squillante, M., Yager, R.R., Kacprzyk, J (eds.) Preferences and Decisions: Models and Applications, Studies in Fuzziness and Soft Computing, vol. 257, pp. 159–182. Springer, Heidelberg (2010)Google Scholar
  31. 31.
    Fedrizzi, M., Kacprzyk, J., Nurmi, H.: Consensus degrees under fuzzy majorities and fuzzy preferences using OWA (ordered weighted average) operators. Control Cybern. 22(4), 71–80 (1993)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Fedrizzi, M., Pasi, G.: Fuzzy logic approaches to consensus modelling in group decision making. In: Ruan, D., Hardeman, F., van der Meer, K. (eds.) Intelligent Decision and Policy Making Support Systems, Studies in Computational Intelligence, vol. 117, pp. 19–37. Springer, Heidelberg (2008)Google Scholar
  33. 33.
    Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support, Theory and Decision Library, series D, vol. 14. Kluwer Academic Publishers, Dordrecht (1994)CrossRefzbMATHGoogle Scholar
  34. 34.
    Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation functions, encyclopedia of mathematics and its applications, vol. 127. Cambridge University Press (2009)Google Scholar
  35. 35.
    Herrera-Viedma, E., Cabrerizo, F.J., Kacprzyk, J., Pedrycz, W.: A review of soft consensus models in a fuzzy environment. Inf. Fusion 17, 4–13 (2014)CrossRefGoogle Scholar
  36. 36.
    Herrera-Viedma, E., García-Lapresta, J.L., Kacprzyk, J., Fedrizzi, M., Nurmi, H., Zadrożny, S.: Consensual Processes, Studies in Fuzziness and Soft Computing, vol. 267. Springer, Heidelberg (2011)Google Scholar
  37. 37.
    Kacprzyk, J., Fedrizzi, M.: Soft consensus measures for monitoring real consensus reaching processes under fuzzy preferences. Control Cybern. 15(3–4), 309–323 (1986)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Kacprzyk, J., Fedrizzi, M.: A soft measure of consensus in the setting of partial (fuzzy) preferences. Eur. J. Oper. Res. 34(3), 316–325 (1988)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Kacprzyk, J., Fedrizzi, M.: A human-consistent degree of consensus based on fuzzy login with linguistic quantifiers. Math. Soc. Sci. 18(3), 275–290 (1989)CrossRefzbMATHGoogle Scholar
  40. 40.
    Kacprzyk, J., Fedrizzi, M., Nurmi, H.: Group decision making and consensus under fuzzy preferences and fuzzy majority. Fuzzy Sets Syst. 49(1), 21–31 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Kacprzyk, J., Nurmi, H., Fedrizzi, M.: Consensus Under Fuzziness, International Series in Intelligent Technologies, vol. 10. Kluwer Academic Publishers, Dordrecht (1997)zbMATHGoogle Scholar
  42. 42.
    Martın, J., Mayor, G.: How separated Palma, Inca and Manacor are? In: Proceedings of the 5th International Summer School of Aggregation Operators AGOP 2009, pp. 195–200. Palma de Mallorca, Spain (2009)Google Scholar
  43. 43.
    Martín, J., Mayor, G.: Some properties of multi-argument distances and fermat multidistance. In: Hllermeier, E., Kruse, R., Hoffmann, F. (eds.) Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Methods, Communications in Computer and Information Science, vol. 80, pp. 703–711. Springer, Heidelberg (2010)Google Scholar
  44. 44.
    Martín, J., Mayor, G.: Multi-argument distances. Fuzzy Sets Syst. 167(1), 92–100 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Martín, J., Mayor, G., Valero, O.: Functionally expressible multidistances. In: S. Galichet, J.M.G. Mauris (eds.) Proceedings of the 7th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-2011) and LFA-2011, Advances in Intelligent Systems Research, pp. 41–46. Atlantis Press, Amsterdam (2011)Google Scholar
  46. 46.
    Merigó, J.M., Casanovas, M.: Decision-making with distance measures and induced aggregation operators. Comput. Ind. Eng. 60, 66–76 (2011)CrossRefzbMATHGoogle Scholar
  47. 47.
    Meskanen, T., Nurmi, H.: Distance from consensus: a theme and variations. In: Simeone, B., Pukelsheim, F. (eds.) Mathematics and Democracy, Studies in Choice and Welfare, pp. 117–132. Springer, Heidelberg (2006)Google Scholar
  48. 48.
    Molinari, F.: About a new family of multidistances. Fuzzy Sets Syst. 195, 118–122 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Palomares, I., Martínez, L., Herrera, F.: A consensus model to detect and manage noncooperative behaviors in large-scale group decision making. IEEE Trans. Fuzzy Syst. 22(3), 516–530 (2014)CrossRefGoogle Scholar
  50. 50.
    Parreiras, R.O., Ekel, P.Y., Martini, J.S.C., Palhares, R.M.: A flexible consensus scheme for multicriteria group decision making under linguistic assessments. Inf. Sci. 180, 1075–1089 (2010)CrossRefGoogle Scholar
  51. 51.
    Xu, Z.: Fuzzy ordered distance measures. Fuzzy Optim. Decis Making 11(1), 73–97 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Xu, Z., Chen, J.: Ordered weighted distance measure. J. Syst. Sci. Syst. Eng. 17(4), 432–445 (2008)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Yu, L., Lai, K.K.: A distance-based group decision-making methodology for multi-person multi-criteria emergency decision support. Decis. Support Syst. 51, 307–315 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Silvia Bortot
    • 1
  • Mario Fedrizzi
    • 1
  • Michele Fedrizzi
    • 1
  • Ricardo Alberto Marques Pereira
    • 1
  • Thuy Hong Nguyen
    • 1
  1. 1.Department of Economics and ManagementUniversity of TrentoTrentoItaly

Personalised recommendations