Imaging of Triple-Negative Breast Cancer

  • Ann R. MootzEmail author
  • Basak E. Dogan


Triple-negative breast cancer (TNBC) is a unique breast cancer subtype with a basal-like gene expression profile and high histologic grade. Compared to the other molecular subtypes of breast cancer, TNBC is seen more often in younger women with dense breast tissue. Thus, TNBC is less likely to be detected with routine mammographic screening. Parallel to having a typical demographic pattern and clinical presentation, imaging findings in TNBC are also characteristic. Some TNBC may present with benign features on mammography and ultrasound, which may result in a delay in diagnosis of this aggressive tumor subtype. In this chapter, we summarize frequently seen imaging features of TNBC on mammography, ultrasound, breast magnetic resonance imaging (MRI), and positron emission mammography (PEM). We emphasize the appropriate role of each modality in detecting, characterizing, and staging TNBC, in monitoring the response to neoadjuvant chemotherapy (NAC), and their potential role in the long-term follow-up of these patients.


Triple-negative breast cancer Mammography Ultrasound Breast MRI 


  1. 1.
    Yang WT, Dryden M, Broglio K, Gilcrease M, Dawood S, Dempsey PJ, et al. Mammographic features of triple receptor-negative primary breast cancers in young premenopausal women. Breast Cancer Res Treat. 2008;111(3):405–10.PubMedCrossRefGoogle Scholar
  2. 2.
    Boisserie-Lacroix M, MacGrogan G, Debled M, Ferron S, Asad-Syed M, McKelvie-Sebileau P, et al. Triple-negative breast cancers: associations between imaging and pathological findings for triple-negative tumors compared with hormone receptor-positive/human epidermal growth factor receptor-2-negative breast cancers. Oncologist. 2013;18(7):802–11.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Collett K, Stefansson IM, Eide J, Braaten A, Wang H, Eide GE, et al. A basal epithelial phenotype is more frequent in interval breast cancers compared with screen detected tumors. Cancer Epidemiol Biomark Prev. 2005;14(5):1108–12.CrossRefGoogle Scholar
  4. 4.
    Shaitelman SF, Tereffe W, Dogan BE, Hess KR, Caudle AS, Valero V, et al. Role of ultrasonography of regional nodal basins in staging triple-negative breast cancer and implications for local-regional treatment. Int J Radiat Oncol Biol Phys. 2015;93(1):102–10.PubMedCrossRefGoogle Scholar
  5. 5.
    Foulkes WD, Metcalfe K, Hanna W, Lynch HT, Ghadirian P, Tung N, et al. Disruption of the expected positive correlation between breast tumor size and lymph node status in BRCA1-related breast carcinoma. Cancer. 2003;98(8):1569–77.PubMedCrossRefGoogle Scholar
  6. 6.
    Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13(15 Pt 1):4429–34.PubMedCrossRefGoogle Scholar
  7. 7.
    Dogan BE, Gonzalez-Angulo AM, Gilcrease M, Dryden MJ, Yang WT. Multimodality imaging of triple receptor-negative tumors with mammography, ultrasound, and MRI. AJR Am J Roentgenol. 2010;194(4):1160–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Dogan BE, Turnbull LW. Imaging of triple-negative breast cancer. Ann Oncol. 2012;23(Suppl 6):vi23–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Wang Y, Ikeda DM, Narasimhan B, Longacre TA, Bleicher RJ, Pal S, et al. Estrogen receptor-negative invasive breast cancer: imaging features of tumors with and without human epidermal growth factor receptor type 2 overexpression. Radiology. 2008;246(2):367–75.PubMedCrossRefGoogle Scholar
  10. 10.
    Warner E, Plewes DB, Hill KA, Causer PA, Zubovits JT, Jong RA, et al. Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA. 2004;292(11):1317–25.PubMedCrossRefGoogle Scholar
  11. 11.
    Schrading S, Kuhl CK. Mammographic, US, and MR imaging phenotypes of familial breast cancer. Radiology. 2008;246(1):58–70.PubMedCrossRefGoogle Scholar
  12. 12.
    Bae MS, Park SY, Song SE, Kim WH, Lee SH, Han W, et al. Heterogeneity of triple-negative breast cancer: mammographic, US, and MR imaging features according to androgen receptor expression. Eur Radiol. 2015;25(2):419–27.PubMedCrossRefGoogle Scholar
  13. 13.
    Ko ES, Lee BH, Kim HA, Noh WC, Kim MS, Lee SA. Triple-negative breast cancer: correlation between imaging and pathological findings. Eur Radiol. 2010;20(5):1111–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Wojcinski S, Soliman AA, Schmidt J, Makowski L, Degenhardt F, Hillemanns P. Sonographic features of triple-negative and non-triple-negative breast cancer. J Ultrasound Med. 2012;31(10):1531–41.PubMedCrossRefGoogle Scholar
  15. 15.
    Fornage BD. Local and regional staging of invasive breast cancer with sonography: 25 years of practice at MD Anderson Cancer Center. Oncologist. 2014;19(1):5–15.PubMedCrossRefGoogle Scholar
  16. 16.
    Boughey JC, McCall LM, Ballman KV, Mittendorf EA, Ahrendt GM, Wilke LG, et al. Tumor biology correlates with rates of breast-conserving surgery and pathologic complete response after neoadjuvant chemotherapy for breast cancer: findings from the ACOSOG Z1071 (alliance) prospective multicenter clinical trial. Ann Surg. 2014;260(4):608–14; discussion 14–6.Google Scholar
  17. 17.
    Boughey JC, Suman VJ, Mittendorf EA, Ahrendt GM, Wilke LG, Taback B, et al. Sentinel lymph node surgery after neoadjuvant chemotherapy in patients with node-positive breast cancer: the ACOSOG Z1071 (alliance) clinical trial. JAMA. 2013;310(14):1455–61.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Caudle AS, Yang WT, Krishnamurthy S, Mittendorf EA, Black DM, Gilcrease MZ, et al. Improved axillary evaluation following neoadjuvant therapy for patients with node-positive breast cancer using selective evaluation of clipped nodes: implementation of targeted axillary dissection. J Clin Oncol. 2016;34(10):1072–8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Dogan BE, Dryden MJ, Wei W, Fornage BD, Buchholz TA, Smith B, et al. Sonography and sonographically guided needle biopsy of internal mammary nodes in staging of patients with breast cancer. AJR Am J Roentgenol. 2015;205(4):905–11.PubMedCrossRefGoogle Scholar
  20. 20.
    Uematsu T. MR imaging of triple-negative breast cancer. Breast Cancer. 2011;18(3):161–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Chen JH, Agrawal G, Feig B, Baek HM, Carpenter PM, Mehta RS, et al. Triple-negative breast cancer: MRI features in 29 patients. Ann Oncol. 2007;18(12):2042–3.PubMedCrossRefGoogle Scholar
  22. 22.
    Uematsu T, Kasami M, Yuen S. Triple-negative breast cancer: correlation between MR imaging and pathologic findings. Radiology. 2009;250(3):638–47.PubMedCrossRefGoogle Scholar
  23. 23.
    Youk JH, Son EJ, Chung J, Kim JA, Kim EK. Triple-negative invasive breast cancer on dynamic contrast-enhanced and diffusion-weighted MR imaging: comparison with other breast cancer subtypes. Eur Radiol. 2012;22(8):1724–34.PubMedCrossRefGoogle Scholar
  24. 24.
    Sung JS, Jochelson MS, Brennan S, Joo S, Wen YH, Moskowitz C, et al. MR imaging features of triple-negative breast cancers. Breast J. 2013;19(6):643–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Costantini M, Belli P, Distefano D, Bufi E, Matteo MD, Rinaldi P, et al. Magnetic resonance imaging features in triple-negative breast cancer: comparison with luminal and HER2-overexpressing tumors. Clin Breast Cancer. 2012;12(5):331–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Fraguell MV, Criville MS, Ferrari JDR, Navarro FJA, Portulas ED, Roquerols JP, et al. Triple-negative breast carcinoma: heterogeneity in immunophenotypes and pharmacokinetic behavior. Radiologia. 2016;58(1):55–63.CrossRefGoogle Scholar
  27. 27.
    Jinguji M, Kajiya Y, Kamimura K, Nakajo M, Sagara Y, Takahama T, et al. Rim enhancement of breast cancers on contrast-enhanced MR imaging: relationship with prognostic factors. Breast Cancer. 2006;13(1):64–73.PubMedCrossRefGoogle Scholar
  28. 28.
    Li J, Han X. Research and progress in magnetic resonance imaging of triple-negative breast cancer. Magn Reson Imaging. 2014;32(4):392–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Turnbull L, Brown S, Harvey I, Olivier C, Drew P, Napp V, et al. Comparative effectiveness of MRI in breast cancer (COMICE) trial: a randomised controlled trial. Lancet. 2010;375(9714):563–71.PubMedCrossRefGoogle Scholar
  30. 30.
    Houssami N, Turner R, Morrow M. Preoperative magnetic resonance imaging in breast cancer meta-analysis of surgical outcomes. Ann Surg. 2013;257(2):249–55.PubMedCrossRefGoogle Scholar
  31. 31.
    Houssami N, Turner R, Macaskill P, Turnbull LW, McCready DR, Tuttle TM, et al. An individual person data meta-analysis of preoperative magnetic resonance imaging and breast cancer recurrence. J Clin Oncol. 2014;32(5):392–401.PubMedCrossRefGoogle Scholar
  32. 32.
    Grimm LJ, Johnson KS, Marcom PK, Baker JA, Soo MS. Can breast cancer molecular subtype help to select patients for preoperative MR imaging? Radiology. 2015;274(2):352–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Lee J, Jung JH, Kim WW, Hwang SO, Kim HJ, Park JY, et al. The role of preoperative breast magnetic resonance (MR) imaging for surgical decision in patients with triple-negative breast cancer. J Surg Oncol. 2016;113(1):12–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Moon HG, Han W, Kim JY, Kim SJ, Yoon JH, SJ O, et al. Effect of multiple invasive foci on breast cancer outcomes according to the molecular subtypes: a report from the Korean Breast Cancer Society. Ann Oncol. 2013;24(9):2298–304.PubMedCrossRefGoogle Scholar
  35. 35.
    Gervais MK, Maki E, Schiller DE, Crystal P, McCready DR. Preoperative MRI of the breast and ipsilateral breast tumor recurrence: long-term follow up. J Surg Oncol. 2017;115:231.PubMedCrossRefGoogle Scholar
  36. 36.
    Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, Mejia JA, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26(8):1275–81.PubMedCrossRefGoogle Scholar
  37. 37.
    Nakahara H, Yasuda Y, Machida E, Maeda Y, Furusawa H, Komaki K, et al. MR and US imaging for breast cancer patients who underwent conservation surgery after neoadjuvant chemotherapy: comparison of triple negative breast cancer and other intrinsic subtypes. Breast Cancer. 2011;18(3):152–60.PubMedCrossRefGoogle Scholar
  38. 38.
    Partridge SC, Gibbs JE, Lu Y, Esserman LJ, Sudilovsky D, Hylton NM. Accuracy of MR imaging for revealing residual breast cancer in patients who have undergone neoadjuvant chemotherapy. AJR Am J Roentgenol. 2002;179(5):1193–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Yeh E, Slanetz P, Kopans DB, Rafferty E, Georgian-Smith D, Moy L, et al. Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer. AJR Am J Roentgenol. 2005;184(3):868–77.PubMedCrossRefGoogle Scholar
  40. 40.
    Hylton NM, Blume JD, Bernreuter WK, Pisano ED, Rosen MA, Morris EA, et al. Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy—results from ACRIN 6657/I-SPY TRIAL. Radiology. 2012;263(3):663–72.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Loo CE, Straver ME, Rodenhuis S, Muller SH, Wesseling J, Vrancken Peeters MJ, et al. Magnetic resonance imaging response monitoring of breast cancer during neoadjuvant chemotherapy: relevance of breast cancer subtype. J Clin Oncol. 2011;29(6):660–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363(20):1938–48.PubMedCrossRefGoogle Scholar
  43. 43.
    Basu S, Chen W, Tchou J, Mavi A, Cermik T, Czerniecki B, et al. Comparison of triple-negative and estrogen receptor-positive/progesterone receptor-positive/HER2-negative breast carcinoma using quantitative fluorine-18 fluorodeoxyglucose/positron emission tomography imaging parameters: a potentially useful method for disease characterization. Cancer. 2008;112(5):995–1000.PubMedCrossRefGoogle Scholar
  44. 44.
    Ulaner GA, Castillo R, Goldman DA, Wills J, Riedl CC, Pinker-Domenig K, et al. (18)F-FDG-PET/CT for systemic staging of newly diagnosed triple-negative breast cancer. Eur J Nucl Med Mol Imaging. 2016;43(11):1937–44.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Berg WA, Weinberg IN, Narayanan D, Lobrano ME, Ross E, Amodei L, et al. High-resolution fluorodeoxyglucose positron emission tomography with compression (“positron emission mammography”) is highly accurate in depicting primary breast cancer. Breast J. 2006;12(4):309–23.PubMedCrossRefGoogle Scholar
  46. 46.
    Berg WA, Madsen KS, Schilling K, Tartar M, Pisano ED, Larsen LH, et al. Breast cancer: comparative effectiveness of positron emission mammography and MR imaging in presurgical planning for the ipsilateral breast. Radiology. 2011;258(1):59–72.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kojima Y, Tsunoda H. Mammography and ultrasound features of triple-negative breast cancer. Breast Cancer. 2011;18(3):146–51.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Diagnostic RadiologyThe University of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations