Advertisement

Initiation, Persistence and Exacerbation of Food Allergy

Chapter
Part of the Birkhäuser Advances in Infectious Diseases book series (BAID)

Abstract

Th2 humoral immunity (IgE) is protective against venoms and parasites but detrimental when mounted against innocuous proteins such as food allergens. The generation of IgE immunity toward harmless allergens is initiated at the body barriers (i.e. mucosae and skin) where the allergen and the immune system first meet. Epithelial cytokines (such as TSLP, IL-25, and IL-33), damage-associated molecular patterns (DAMPs), alarmins, or barrier disruption at the time of allergen encounter can deviate dendritic cells (DCs) away from the natural tolerogenic response to a food allergen. Then, instructed DCs migrate to draining lymph nodes and facilitate Th2 CD4 T cell polarization by limiting IL-12p40 production and upregulating costimulatory molecules such as OX40L. In this setting, IL-4 production by CD4 Th2 cells is crucial for the emergence of IgE+ B cells and plasma cells. The lifespan of allergen-specific IgE+ plasma cells is short, thereby limiting their ability to sustain IgE titres over time. In contrast, long-lasting immunological memory that includes CD4 T and B cells is imprinted at the time of sensitization. These cells are activated on allergen exposure and replenish the transient IgE+ plasma cell compartment in an IL-4 dependent manner. While immunological memory provides sustainable immunity against pathogens, it underlies persistence and exacerbation of food allergy. Therefore, reaching a better understanding of Th2 immune memory and the cellular and molecular mechanisms driving IgE-generating secondary responses is a major undertaking in the search for novel therapeutic targets in food allergy.

Keywords

Food allergy Th2 sensitization B cells Memory IgE 

Notes

Acknowledgements

Research by the Jordana-Waserman lab cited in this work has been supported by the Canadian Institutes of Health Research (CIHR), MedImmune LLC (USA), the National Institutes of Health (NIH, USA), AllerGen NCE, Food Allergy Canada, the Delaney family and the Walter and Maria Schroeder Foundation. MJ is a senior Canada Research Chair in Immunobiology of Respiratory Diseases and Allergy. RJ holds a MITACS Postdoctoral Fellowship. DKC is a Vanier Scholar. We thank Joshua Koenig for critical review of this chapter.

References

  1. Achatz-Straussberger G, Zaborsky N, Konigsberger S, Luger EO, Lamers M, Crameri R, Achatz G (2008) Migration of antibody secreting cells towards CXCL12 depends on the isotype that forms the BCR. Eur J Immunol 38(11):3167–3177.  https://doi.org/10.1002/eji.200838456 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahmed R, Gray D (1996) Immunological memory and protective immunity: understanding their relation. Science 272(5258):54–60PubMedCrossRefGoogle Scholar
  3. Amanna IJ, Carlson NE, Slifka MK (2007) Duration of humoral immunity to common viral and vaccine antigens. N Engl J Med 357(19):1903–1915.  https://doi.org/10.1056/NEJMoa066092 PubMedCrossRefGoogle Scholar
  4. Ashley SE, Tan HT, Vuillermin P, Dharmage SC, Tang ML, Koplin J, Gurrin LC, Lowe A, Lodge C, Ponsonby AL, Molloy J, Martin P, Matheson MC, Saffery R, Allen KJ, Ellis JA, Martino D, HealthNuts team, Barwon Infant Study tMACstPATS, the Peanut Oral ImmunoTherapy Study (2017) The skin barrier function gene SPINK5 is associated with challenge-proven IgE-mediated food allergy in infants. Allergy.  https://doi.org/10.1111/all.13143
  5. Berkowska MA, Heeringa JJ, Hajdarbegovic E, van der Burg M, Thio HB, van Hagen PM, Boon L, Orfao A, van Dongen JJ, van Zelm MC (2014) Human IgE(+) B cells are derived from T cell-dependent and T cell-independent pathways. J Allergy Clin Immunol 134(3):688–697.e686.  https://doi.org/10.1016/j.jaci.2014.03.036 PubMedCrossRefGoogle Scholar
  6. Besnard AG, Togbe D, Guillou N, Erard F, Quesniaux V, Ryffel B (2011) IL-33-activated dendritic cells are critical for allergic airway inflammation. Eur J Immunol 41(6):1675–1686.  https://doi.org/10.1002/eji.201041033 PubMedCrossRefGoogle Scholar
  7. Brightbill HD, Jeet S, Lin Z, Yan D, Zhou M, Tan M, Nguyen A, Yeh S, Delarosa D, Leong SR, Wong T, Chen Y, Ultsch M, Luis E, Ramani SR, Jackman J, Gonzalez L, Dennis MS, Chuntharapai A, DeForge L, Meng YG, Xu M, Eigenbrot C, Lee WP, Refino CJ, Balazs M, Wu LC (2010) Antibodies specific for a segment of human membrane IgE deplete IgE-producing B cells in humanized mice. J Clin Invest 120(6):2218–2229.  https://doi.org/10.1172/JCI40141 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Brown SJ, Asai Y, Cordell HJ, Campbell LE, Zhao Y, Liao H, Northstone K, Henderson J, Alizadehfar R, Ben-Shoshan M, Morgan K, Roberts G, Masthoff LJ, Pasmans SG, van den Akker PC, Wijmenga C, Hourihane JO, Palmer CN, Lack G, Clarke A, Hull PR, Irvine AD, McLean WH (2011) Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J Allergy Clin Immunol 127(3):661–667.  https://doi.org/10.1016/j.jaci.2011.01.031 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Buchholz VR, Schumacher TN, Busch DH (2016) T cell fate at the single-cell level. Annu Rev Immunol 34:65–92.  https://doi.org/10.1146/annurev-immunol-032414-112014 PubMedCrossRefGoogle Scholar
  10. Cates EC, Fattouh R, Wattie J, Inman MD, Goncharova S, Coyle AJ, Gutierrez-Ramos JC, Jordana M (2004) Intranasal exposure of mice to house dust mite elicits allergic airway inflammation via a GM-CSF-mediated mechanism. J Immunol 173(10):6384–6392PubMedCrossRefGoogle Scholar
  11. Catron DM, Rusch LK, Hataye J, Itano AA, Jenkins MK (2006) CD4+ T cells that enter the draining lymph nodes after antigen injection participate in the primary response and become central-memory cells. J Exp Med 203(4):1045–1054.  https://doi.org/10.1084/jem.20051954 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cherry WB, Yoon J, Bartemes KR, Iijima K, Kita H (2008) A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. J Allergy Clin Immunol 121(6):1484–1490.  https://doi.org/10.1016/j.jaci.2008.04.005 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chowdhury PS, Chen Y, Yang C, Cook KE, Nyborg AC, Ettinger R, Herbst R, Kiener PA, Wu H (2012) Targeting the junction of CvarepsilonmX and varepsilon-migis for the specific depletion of mIgE-expressing B cells. Mol Immunol 52(3–4):279–288.  https://doi.org/10.1016/j.molimm.2012.06.004 PubMedCrossRefGoogle Scholar
  14. Chu DK, Llop-Guevara A, Walker TD, Flader K, Goncharova S, Boudreau JE, Moore CL, Seunghyun In T, Waserman S, Coyle AJ, Kolbeck R, Humbles AA, Jordana M (2013) IL-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and peanut allergic sensitization. J Allergy Clin Immunol 131(1):187–200.e181–188.  https://doi.org/10.1016/j.jaci.2012.08.002 PubMedCrossRefGoogle Scholar
  15. Chu DK, Jimenez-Saiz R, Verschoor CP, Walker TD, Goncharova S, Llop-Guevara A, Shen P, Gordon ME, Barra NG, Bassett JD, Kong J, Fattouh R, McCoy KD, Bowdish DM, Erjefalt JS, Pabst O, Humbles AA, Kolbeck R, Waserman S, Jordana M (2014) Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo. J Exp Med 211(8):1657–1672.  https://doi.org/10.1084/jem.20131800 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chu SY, Horton HM, Pong E, Leung IW, Chen H, Nguyen DH, Bautista C, Muchhal US, Bernett MJ, Moore GL, Szymkowski DE, Desjarlais JR (2012) Reduction of total IgE by targeted coengagement of IgE B-cell receptor and FcgammaRIIb with Fc-engineered antibody. J Allergy Clin Immunol 129(4):1102–1115.  https://doi.org/10.1016/j.jaci.2011.11.029 PubMedCrossRefGoogle Scholar
  17. Ckless K, Hodgkins SR, Ather JL, Martin R, Poynter ME (2011) Epithelial, dendritic, and CD4(+) T cell regulation of and by reactive oxygen and nitrogen species in allergic sensitization. Biochim Biophys Acta 1810(11):1025–1034.  https://doi.org/10.1016/j.bbagen.2011.03.005 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Connor LM, Tang SC, Cognard E, Ochiai S, Hilligan KL, Old SI, Pellefigues C, White RF, Patel D, Smith AA, Eccles DA, Lamiable O, McConnell MJ, Ronchese F (2017) Th2 responses are primed by skin dendritic cells with distinct transcriptional profiles. J Exp Med 214(1):125–142.  https://doi.org/10.1084/jem.20160470 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Corcoran LM, Tarlinton DM (2016) Regulation of germinal center responses, memory B cells and plasma cell formation-an update. Curr Opin Immunol 39:59–67.  https://doi.org/10.1016/j.coi.2015.12.008 PubMedCrossRefGoogle Scholar
  20. Dal Porto JM, Haberman AM, Shlomchik MJ, Kelsoe G (1998) Antigen drives very low affinity B cells to become plasmacytes and enter germinal centers. J Immunol 161(10):5373–5381PubMedGoogle Scholar
  21. Davies JM, Platts-Mills TA, Aalberse RC (2013) The enigma of IgE+ B-cell memory in human subjects. J Allergy Clin Immunol 131(4):972–976.  https://doi.org/10.1016/j.jaci.2012.12.1569 PubMedCrossRefGoogle Scholar
  22. Defrance T, Taillardet M, Genestier L (2011) T cell-independent B cell memory. Curr Opin Immunol 23(3):330–336.  https://doi.org/10.1016/j.coi.2011.03.004 PubMedCrossRefGoogle Scholar
  23. Di Niro R, Lee SJ, Vander Heiden JA, Elsner RA, Trivedi N, Bannock JM, Gupta NT, Kleinstein SH, Vigneault F, Gilbert TJ, Meffre E, McSorley SJ, Shlomchik MJ (2015) Salmonella infection drives promiscuous B cell activation followed by extrafollicular affinity maturation. Immunity 43(1):120–131.  https://doi.org/10.1016/j.immuni.2015.06.013 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Erazo A, Kutchukhidze N, Leung M, Christ AP, Urban JF Jr, Curotto de Lafaille MA, Lafaille JJ (2007) Unique maturation program of the IgE response in vivo. Immunity 26(2):191–203.  https://doi.org/10.1016/j.immuni.2006.12.006 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Fazilleau N, Eisenbraun MD, Malherbe L, Ebright JN, Pogue-Caley RR, McHeyzer-Williams LJ, McHeyzer-Williams MG (2007) Lymphoid reservoirs of antigen-specific memory T helper cells. Nat Immunol 8(7):753–761.  https://doi.org/10.1038/ni1472 PubMedCrossRefGoogle Scholar
  26. Finley JJ (1951) The complete writings of thucydides: the Peloponesian War. Modern Library, New YorkGoogle Scholar
  27. Forbes EE, Groschwitz K, Abonia JP, Brandt EB, Cohen E, Blanchard C, Ahrens R, Seidu L, McKenzie A, Strait R, Finkelman FD, Foster PS, Matthaei KI, Rothenberg ME, Hogan SP (2008) IL-9- and mast cell-mediated intestinal permeability predisposes to oral antigen hypersensitivity. J Exp Med 205(4):897–913.  https://doi.org/10.1084/jem.20071046 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fukuda T, Yoshida T, Okada S, Hatano M, Miki T, Ishibashi K, Okabe S, Koseki H, Hirosawa S, Taniguchi M, Miyasaka N, Tokuhisa T (1997) Disruption of the Bcl6 gene results in an impaired germinal center formation. J Exp Med 186(3):439–448PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gajewska BU, Wiley RE, Jordana M (2003) GM-CSF and dendritic cells in allergic airway inflammation: basic mechanisms and prospects for therapeutic intervention. Curr Drug Targets Inflamm Allergy 2(4):279–292PubMedCrossRefGoogle Scholar
  30. Gasper DJ, Tejera MM, Suresh M (2014) CD4 T-cell memory generation and maintenance. Crit Rev Immunol 34(2):121–146PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gauvreau GM, Harris JM, Boulet LP, Scheerens H, Fitzgerald JM, Putnam WS, Cockcroft DW, Davis BE, Leigh R, Zheng Y, Dahlen B, Wang Y, Maciuca R, Mayers I, Liao XC, Wu LC, Matthews JG, O’Byrne PM (2014) Targeting membrane-expressed IgE B cell receptor with an antibody to the M1 prime epitope reduces IgE production. Sci Transl Med 6(243):243ra285.  https://doi.org/10.1126/scitranslmed.3008961 CrossRefGoogle Scholar
  32. Gebhardt T, Whitney PG, Zaid A, Mackay LK, Brooks AG, Heath WR, Carbone FR, Mueller SN (2011) Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477(7363):216–219.  https://doi.org/10.1038/nature10339 PubMedCrossRefGoogle Scholar
  33. Gonzalez-Garcia I, Rodriguez-Bayona B, Mora-Lopez F, Campos-Caro A, Brieva JA (2008) Increased survival is a selective feature of human circulating antigen-induced plasma cells synthesizing high-affinity antibodies. Blood 111(2):741–749.  https://doi.org/10.1182/blood-2007-08-108118 PubMedCrossRefGoogle Scholar
  34. Gould HJ, Ramadani F (2015) IgE responses in mouse and man and the persistence of IgE memory. Trends Immunol 36(1):40–48.  https://doi.org/10.1016/j.it.2014.11.002 PubMedCrossRefGoogle Scholar
  35. Hale JS, Ahmed R (2015) Memory T follicular helper CD4 T cells. Front Immunol 6:16.  https://doi.org/10.3389/fimmu.2015.00016 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Halliley JL, Tipton CM, Liesveld J, Rosenberg AF, Darce J, Gregoretti IV, Popova L, Kaminiski D, Fucile CF, Albizua I, Kyu S, Chiang KY, Bradley KT, Burack R, Slifka M, Hammarlund E, Wu H, Zhao L, Walsh EE, Falsey AR, Randall TD, Cheung WC, Sanz I, Lee FE (2015) Long-lived plasma cells are contained within the CD19(-)CD38(hi)CD138(+) subset in human bone marrow. Immunity 43(1):132–145.  https://doi.org/10.1016/j.immuni.2015.06.016 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hammad H, Lambrecht BN (2015) Barrier epithelial cells and the control of type 2 immunity. Immunity 43(1):29–40.  https://doi.org/10.1016/j.immuni.2015.07.007 PubMedCrossRefGoogle Scholar
  38. Han H, Thelen TD, Comeau MR, Ziegler SF (2014) Thymic stromal lymphopoietin-mediated epicutaneous inflammation promotes acute diarrhea and anaphylaxis. J Clin Invest 124(12):5442–5452.  https://doi.org/10.1172/JCI77798 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Haniuda K, Fukao S, Kodama T, Hasegawa H, Kitamura D (2016) Autonomous membrane IgE signaling prevents IgE-memory formation. Nat Immunol 17(9):1109–1117.  https://doi.org/10.1038/ni.3508 PubMedCrossRefGoogle Scholar
  40. Harris JM, Maciuca R, Bradley MS, Cabanski CR, Scheerens H, Lim J, Cai F, Kishnani M, Liao XC, Samineni D, Zhu R, Cochran C, Soong W, Diaz JD, Perin P, Tsukayama M, Dimov D, Agache I, Kelsen SG (2016) A randomized trial of the efficacy and safety of quilizumab in adults with inadequately controlled allergic asthma. Respir Res 17:29.  https://doi.org/10.1186/s12931-016-0347-2 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hasbold J, Corcoran LM, Tarlinton DM, Tangye SG, Hodgkin PD (2004) Evidence from the generation of immunoglobulin G-secreting cells that stochastic mechanisms regulate lymphocyte differentiation. Nat Immunol 5(1):55–63.  https://doi.org/10.1038/ni1016 PubMedCrossRefGoogle Scholar
  42. He JS, Meyer-Hermann M, Xiangying D, Zuan LY, Jones LA, Ramakrishna L, de Vries VC, Dolpady J, Aina H, Joseph S, Narayanan S, Subramaniam S, Puthia M, Wong G, Xiong H, Poidinger M, Urban JF, Lafaille JJ, Curotto de Lafaille MA (2013) The distinctive germinal center phase of IgE+ B lymphocytes limits their contribution to the classical memory response. J Exp Med 210(12):2755–2771.  https://doi.org/10.1084/jem.20131539 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Heil M, Land WG (2014) Danger signals – damaged-self recognition across the tree of life. Front Plant Sci 5:578.  https://doi.org/10.3389/fpls.2014.00578 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hilmenyuk T, Bellinghausen I, Heydenreich B, Ilchmann A, Toda M, Grabbe S, Saloga J (2010) Effects of glycation of the model food allergen ovalbumin on antigen uptake and presentation by human dendritic cells. Immunology 129(3):437–445.  https://doi.org/10.1111/j.1365-2567.2009.03199.x PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hondowicz BD, An D, Schenkel JM, Kim KS, Steach HR, Krishnamurty AT, Keitany GJ, Garza EN, Fraser KA, Moon JJ, Altemeier WA, Masopust D, Pepper M (2016) Interleukin-2-dependent allergen-specific tissue-resident memory cells drive asthma. Immunity 44(1):155–166.  https://doi.org/10.1016/j.immuni.2015.11.004 PubMedCrossRefGoogle Scholar
  46. Jaigirdar SA, MacLeod MK (2015) Development and function of protective and pathologic memory CD4 T cells. Front Immunol 6:456.  https://doi.org/10.3389/fimmu.2015.00456 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Jiménez-Saiz R, Benede S, Molina E, Lopez-Exposito I (2015) Effect of processing technologies on the allergenicity of food products. Crit Rev Food Sci Nutr 55(13):1902–1917.  https://doi.org/10.1080/10408398.2012.736435 PubMedCrossRefGoogle Scholar
  48. Jiménez-Saiz R, Chu DK, Mandur TS, Walker TD, Gordon ME, Chaudhary R, Koenig J, Saliba S, Galipeau HJ, Utley A, King IL, Lee K, Ettinger R, Waserman S, Kolbeck R, Jordana M (2017) Lifelong memory responses perpetuate humoral TH2 immunity and anaphylaxis in food allergy. J Allergy Clin Immunol.  https://doi.org/10.1016/j.jaci.2017.01.018
  49. Kamalakannan M, Chang LM, Grishina G, Sampson HA, Masilamani M (2016) Identification and characterization of DC-SIGN-binding glycoproteins in allergenic foods. Allergy 71(8):1145–1155.  https://doi.org/10.1111/all.12873 PubMedCrossRefGoogle Scholar
  50. Karnowski A, Achatz-Straussberger G, Klockenbusch C, Achatz G, Lamers MC (2006) Inefficient processing of mRNA for the membrane form of IgE is a genetic mechanism to limit recruitment of IgE-secreting cells. Eur J Immunol 36(7):1917–1925.  https://doi.org/10.1002/eji.200535495 PubMedCrossRefGoogle Scholar
  51. Kim C, Wilson T, Fischer KF, Williams MA (2013) Sustained interactions between T cell receptors and antigens promote the differentiation of CD4(+) memory T cells. Immunity 39(3):508–520.  https://doi.org/10.1016/j.immuni.2013.08.033 PubMedCrossRefGoogle Scholar
  52. Kong J, Chalcraft K, Mandur TS, Jimenez-Saiz R, Walker TD, Goncharova S, Gordon ME, Naji L, Flader K, Larche M, Chu DK, Waserman S, McCarry B, Jordana M (2015) Comprehensive metabolomics identifies the alarmin uric acid as a critical signal for the induction of peanut allergy. Allergy 70(5):495–505.  https://doi.org/10.1111/all.12579 PubMedCrossRefGoogle Scholar
  53. Kurosaki T, Kometani K, Ise W (2015) Memory B cells. Nat Rev Immunol 15(3):149–159.  https://doi.org/10.1038/nri3802 PubMedCrossRefGoogle Scholar
  54. Lafaille JJ, Xiong H, Curotto de Lafaille MA (2012) On the differentiation of mouse IgE(+) cells. Nat Immunol 13 (7):623; author reply 623–624.  https://doi.org/10.1038/ni.2313
  55. Laffleur B, Duchez S, Tarte K, Denis-Lagache N, Peron S, Carrion C, Denizot Y, Cogne M (2015) Self-restrained B cells arise following membrane IgE expression. Cell Rep.  https://doi.org/10.1016/j.celrep.2015.01.023
  56. Landsverk OJ, Snir O, Casado RB, Richter L, Mold JE, Reu P, Horneland R, Paulsen V, Yaqub S, Aandahl EM, Oyen OM, Thorarensen HS, Salehpour M, Possnert G, Frisen J, Sollid LM, Baekkevold ES, Jahnsen FL (2017) Antibody-secreting plasma cells persist for decades in human intestine. J Exp Med 214(2):309–317.  https://doi.org/10.1084/jem.20161590 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lee JB, Chen CY, Liu B, Mugge L, Angkasekwinai P, Facchinetti V, Dong C, Liu YJ, Rothenberg ME, Hogan SP, Finkelman FD, Wang YH (2016) IL-25 and CD4(+) TH2 cells enhance type 2 innate lymphoid cell-derived IL-13 production, which promotes IgE-mediated experimental food allergy. J Allergy Clin Immunol 137(4):1216–1225.e1211–1215.  https://doi.org/10.1016/j.jaci.2015.09.019 PubMedCrossRefGoogle Scholar
  58. Linterman MA, Beaton L, Yu D, Ramiscal RR, Srivastava M, Hogan JJ, Verma NK, Smyth MJ, Rigby RJ, Vinuesa CG (2010) IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J Exp Med 207(2):353–363.  https://doi.org/10.1084/jem.20091738 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Liu YJ, Soumelis V, Watanabe N, Ito T, Wang YH, Malefyt Rde W, Omori M, Zhou B, Ziegler SF (2007) TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation. Annu Rev Immunol 25:193–219.  https://doi.org/10.1146/annurev.immunol.25.022106.141718 PubMedCrossRefGoogle Scholar
  60. Llop-Guevara A, Chu DK, Walker TD, Goncharova S, Fattouh R, Silver JS, Moore CL, Xie JL, O’Byrne PM, Coyle AJ, Kolbeck R, Humbles AA, Stampfli MR, Jordana M (2014) A GM-CSF/IL-33 pathway facilitates allergic airway responses to sub-threshold house dust mite exposure. PLoS One 9(2):e88714.  https://doi.org/10.1371/journal.pone.0088714 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Locci M, Havenar-Daughton C, Landais E, Wu J, Kroenke MA, Arlehamn CL, Su LF, Cubas R, Davis MM, Sette A, Haddad EK, International AVIPCPI, Poignard P, Crotty S (2013) Human circulating PD-1+CXCR3-CXCR5+ memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses. Immunity 39(4):758–769.  https://doi.org/10.1016/j.immuni.2013.08.031 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Luger EO, Wegmann M, Achatz G, Worm M, Renz H, Radbruch A (2010) Allergy for a lifetime? Allergol Int 59(1):1–8.  https://doi.org/10.2332/allergolint.10-RAI-0175 PubMedCrossRefGoogle Scholar
  63. MacLeod MK, David A, McKee AS, Crawford F, Kappler JW, Marrack P (2011) Memory CD4 T cells that express CXCR5 provide accelerated help to B cells. J Immunol 186(5):2889–2896.  https://doi.org/10.4049/jimmunol.1002955 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Manz RA, Thiel A, Radbruch A (1997) Lifetime of plasma cells in the bone marrow. Nature 388(6638):133–134.  https://doi.org/10.1038/40540 PubMedCrossRefGoogle Scholar
  65. Massacand JC, Stettler RC, Meier R, Humphreys NE, Grencis RK, Marsland BJ, Harris NL (2009) Helminth products bypass the need for TSLP in Th2 immune responses by directly modulating dendritic cell function. Proc Natl Acad Sci USA 106(33):13968–13973.  https://doi.org/10.1073/pnas.0906367106 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Mayuzumi N, Matsushima H, Takashima A (2009) IL-33 promotes DC development in BM culture by triggering GM-CSF production. Eur J Immunol 39(12):3331–3342.  https://doi.org/10.1002/eji.200939472 PubMedPubMedCentralCrossRefGoogle Scholar
  67. McHeyzer-Williams LJ, Milpied PJ, Okitsu SL, McHeyzer-Williams MG (2015) Class-switched memory B cells remodel BCRs within secondary germinal centers. Nat Immunol 16(3):296–305.  https://doi.org/10.1038/ni.3095 PubMedPubMedCentralCrossRefGoogle Scholar
  68. McKinstry KK, Strutt TM, Bautista B, Zhang W, Kuang Y, Cooper AM, Swain SL (2014) Effector CD4 T-cell transition to memory requires late cognate interactions that induce autocrine IL-2. Nat Commun 5:5377.  https://doi.org/10.1038/ncomms6377 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Mei HE, Wirries I, Frolich D, Brisslert M, Giesecke C, Grun JR, Alexander T, Schmidt S, Luda K, Kuhl AA, Engelmann R, Durr M, Scheel T, Bokarewa M, Perka C, Radbruch A, Dorner T (2015) A unique population of IgG-expressing plasma cells lacking CD19 is enriched in human bone marrow. Blood 125(11):1739–1748.  https://doi.org/10.1182/blood-2014-02-555169 PubMedCrossRefGoogle Scholar
  70. Morita R, Schmitt N, Bentebibel SE, Ranganathan R, Bourdery L, Zurawski G, Foucat E, Dullaers M, Oh S, Sabzghabaei N, Lavecchio EM, Punaro M, Pascual V, Banchereau J, Ueno H (2011) Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34(1):108–121.  https://doi.org/10.1016/j.immuni.2010.12.012 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Moutsoglou DM, Dreskin SC (2016) B cells establish, but do not maintain, long-lived murine anti-peanut IgE(a). Clin Exp Allergy 46(4):640–653.  https://doi.org/10.1111/cea.12715 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Muto T, Fukuoka A, Kabashima K, Ziegler SF, Nakanishi K, Matsushita K, Yoshimoto T (2014) The role of basophils and proallergic cytokines, TSLP and IL-33, in cutaneously sensitized food allergy. Int Immunol 26(10):539–549.  https://doi.org/10.1093/intimm/dxu058 PubMedCrossRefGoogle Scholar
  73. Nakayama T, Hirahara K, Onodera A, Endo Y, Hosokawa H, Shinoda K, Tumes DJ, Okamoto Y (2016) Th2 cells in health and disease. Annu Rev Immunol.  https://doi.org/10.1146/annurev-immunol-051116-052350
  74. Noti M, Kim BS, Siracusa MC, Rak GD, Kubo M, Moghaddam AE, Sattentau QA, Comeau MR, Spergel JM, Artis D (2014) Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin-basophil axis. J Allergy Clin Immunol 133(5):1390–1399.e1391–1396.  https://doi.org/10.1016/j.jaci.2014.01.021 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Noval Rivas M, Burton OT, Oettgen HC, Chatila T (2016) IL-4 production by group 2 innate lymphoid cells promotes food allergy by blocking regulatory T-cell function. J Allergy Clin Immunol 138(3):801–811.e809.  https://doi.org/10.1016/j.jaci.2016.02.030 PubMedCrossRefGoogle Scholar
  76. Orgel KA, Duan S, Wright BL, Maleki SJ, Wolf JC, Vickery BP, Burks AW, Paulson JC, Kulis MD, Macauley MS (2017) Exploiting CD22 on antigen-specific B cells to prevent allergy to the major peanut allergen Ara h 2. J Allergy Clin Immunol 139(1):366–369.e362.  https://doi.org/10.1016/j.jaci.2016.06.053 PubMedCrossRefGoogle Scholar
  77. Otte M, Mahler V, Kerpes A, Pabst O, Voehringer D (2016) Persistence of the IgE repertoire in birch pollen allergy. J Allergy Clin Immunol 137(6):1884–1887.e1888.  https://doi.org/10.1016/j.jaci.2015.12.1333 PubMedCrossRefGoogle Scholar
  78. Panum P (1847) Beobachtungen über das Maserncontagium. Virchows Arch 1(3):492–512.  https://doi.org/10.1007/BF02114472 CrossRefGoogle Scholar
  79. Parham P (2015) The immune system. Garland Science, New YorkGoogle Scholar
  80. Paus D, Phan TG, Chan TD, Gardam S, Basten A, Brink R (2006) Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell differentiation. J Exp Med 203(4):1081–1091.  https://doi.org/10.1084/jem.20060087 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Perrier C, Corthesy B (2011) Gut permeability and food allergies. Clin Exp Allergy 41(1):20–28.  https://doi.org/10.1111/j.1365-2222.2010.03639.x PubMedCrossRefGoogle Scholar
  82. Pulendran B, Tang H, Manicassamy S (2010) Programming dendritic cells to induce T(H)2 and tolerogenic responses. Nat Immunol 11(8):647–655.  https://doi.org/10.1038/ni.1894 PubMedCrossRefGoogle Scholar
  83. Qi H, Cannons JL, Klauschen F, Schwartzberg PL, Germain RN (2008) SAP-controlled T-B cell interactions underlie germinal centre formation. Nature 455(7214):764–769.  https://doi.org/10.1038/nature07345 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Qian Y, Wei C, Eun-Hyung Lee F, Campbell J, Halliley J, Lee JA, Cai J, Kong YM, Sadat E, Thomson E, Dunn P, Seegmiller AC, Karandikar NJ, Tipton CM, Mosmann T, Sanz I, Scheuermann RH (2010) Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry B Clin Cytom 78(Suppl 1):S69–S82.  https://doi.org/10.1002/cyto.b.20554 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ramadani F, Bowen H, Upton N, Hobson PS, Chan YC, Chen JB, Chang TW, McDonnell JM, Sutton BJ, Fear DJ, Gould HJ (2017) Ontogeny of human IgE-expressing B cells and plasma cells. Allergy 72(1):66–76.  https://doi.org/10.1111/all.12911 PubMedCrossRefGoogle Scholar
  86. Sallusto F, Lanzavecchia A (2009) Heterogeneity of CD4+ memory T cells: functional modules for tailored immunity. Eur J Immunol 39(8):2076–2082.  https://doi.org/10.1002/eji.200939722 PubMedCrossRefGoogle Scholar
  87. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401(6754):708–712.  https://doi.org/10.1038/44385 PubMedCrossRefGoogle Scholar
  88. Savage J, Sicherer S, Wood R (2016) The natural history of food allergy. J Allergy Clin Immunol Pract 4 (2):196–203; quiz 204.  https://doi.org/10.1016/j.jaip.2015.11.024
  89. Schenkel JM, Masopust D (2014) Tissue-resident memory T cells. Immunity 41(6):886–897.  https://doi.org/10.1016/j.immuni.2014.12.007 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Schluns KS, Lefrancois L (2003) Cytokine control of memory T-cell development and survival. Nat Rev Immunol 3(4):269–279.  https://doi.org/10.1038/nri1052 PubMedCrossRefGoogle Scholar
  91. Seder RA, Ahmed R (2003) Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat Immunol 4(9):835–842.  https://doi.org/10.1038/ni969 PubMedCrossRefGoogle Scholar
  92. Shreffler WG, Castro RR, Kucuk ZY, Charlop-Powers Z, Grishina G, Yoo S, Burks AW, Sampson HA (2006) The major glycoprotein allergen from Arachis hypogaea, Ara h 1, is a ligand of dendritic cell-specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant in vitro. J Immunol 177(6):3677–3685PubMedCrossRefGoogle Scholar
  93. Slifka MK, Antia R, Whitmire JK, Ahmed R (1998) Humoral immunity due to long-lived plasma cells. Immunity 8(3):363–372PubMedCrossRefGoogle Scholar
  94. Stampfli MR, Wiley RE, Neigh GS, Gajewska BU, Lei XF, Snider DP, Xing Z, Jordana M (1998) GM-CSF transgene expression in the airway allows aerosolized ovalbumin to induce allergic sensitization in mice. J Clin Invest 102(9):1704–1714.  https://doi.org/10.1172/JCI4160 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Stary G, Olive A, Radovic-Moreno AF, Gondek D, Alvarez D, Basto PA, Perro M, Vrbanac VD, Tager AM, Shi J, Yethon JA, Farokhzad OC, Langer R, Starnbach MN, von Andrian UH (2015) VACCINES. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science 348(6241):aaa8205.  https://doi.org/10.1126/science.aaa8205 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Tada Y, Asahina A, Nakamura K, Tomura M, Fujiwara H, Tamaki K (2000) Granulocyte/macrophage colony-stimulating factor inhibits IL-12 production of mouse Langerhans cells. J Immunol 164(10):5113–5119PubMedCrossRefGoogle Scholar
  97. Takeshita M, Suzuki K, Kassai Y, Takiguchi M, Nakayama Y, Otomo Y, Morita R, Miyazaki T, Yoshimura A, Takeuchi T (2015) Polarization diversity of human CD4+ stem cell memory T cells. Clin Immunol 159(1):107–117.  https://doi.org/10.1016/j.clim.2015.04.010 PubMedCrossRefGoogle Scholar
  98. Talay O, Yan D, Brightbill HD, Straney EE, Zhou M, Ladi E, Lee WP, Egen JG, Austin CD, Xu M, Wu LC (2012) IgE(+) memory B cells and plasma cells generated through a germinal-center pathway. Nat Immunol 13(4):396–404.  https://doi.org/10.1038/ni.2256 PubMedCrossRefGoogle Scholar
  99. Tang H, Cao W, Kasturi SP, Ravindran R, Nakaya HI, Kundu K, Murthy N, Kepler TB, Malissen B, Pulendran B (2010) The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling. Nat Immunol 11(7):608–617.  https://doi.org/10.1038/ni.1883 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Taylor JJ, Pape KA, Jenkins MK (2012) A germinal center-independent pathway generates unswitched memory B cells early in the primary response. J Exp Med 209(3):597–606.  https://doi.org/10.1084/jem.20111696 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Thyssen JP, Maibach HI (2014) Filaggrin: basic science, epidemiology, clinical aspects and management. Springer, BerlinCrossRefGoogle Scholar
  102. Tooze RM (2013) A replicative self-renewal model for long-lived plasma cells: questioning irreversible cell cycle exit. Front Immunol 4:460.  https://doi.org/10.3389/fimmu.2013.00460 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Tordesillas L, Goswami R, Benede S, Grishina G, Dunkin D, Jarvinen KM, Maleki SJ, Sampson HA, Berin MC (2014) Skin exposure promotes a Th2-dependent sensitization to peanut allergens. J Clin Invest 124(11):4965–4975.  https://doi.org/10.1172/JCI75660 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Traidl-Hoffmann C, Mariani V, Hochrein H, Karg K, Wagner H, Ring J, Mueller MJ, Jakob T, Behrendt H (2005) Pollen-associated phytoprostanes inhibit dendritic cell interleukin-12 production and augment T helper type 2 cell polarization. J Exp Med 201(4):627–636.  https://doi.org/10.1084/jem.20041065 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Turqueti-Neves A, Otte M, Schwartz C, Schmitt ME, Lindner C, Pabst O, Yu P, Voehringer D (2015) The extracellular domains of IgG1 and T cell-derived IL-4/IL-13 are critical for the polyclonal memory IgE response in vivo. PLoS Biol 13(11):e1002290.  https://doi.org/10.1371/journal.pbio.1002290 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Ugur M, Schulz O, Menon MB, Krueger A, Pabst O (2014) Resident CD4+ T cells accumulate in lymphoid organs after prolonged antigen exposure. Nat Commun 5:4821.  https://doi.org/10.1038/ncomms5821 PubMedCrossRefGoogle Scholar
  107. Vannella KM, Ramalingam TR, Borthwick LA, Barron L, Hart KM, Thompson RW, Kindrachuk KN, Cheever AW, White S, Budelsky AL, Comeau MR, Smith DE, Wynn TA (2016) Combinatorial targeting of TSLP, IL-25, and IL-33 in type 2 cytokine-driven inflammation and fibrosis. Sci Transl Med 8(337):337ra365.  https://doi.org/10.1126/scitranslmed.aaf1938 CrossRefGoogle Scholar
  108. Weisel F, Shlomchik M (2017) Memory B cells of mice and humans. Annu Rev Immunol.  https://doi.org/10.1146/annurev-immunol-041015-055531
  109. Willart MA, Deswarte K, Pouliot P, Braun H, Beyaert R, Lambrecht BN, Hammad H (2012) Interleukin-1alpha controls allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33. J Exp Med 209(8):1505–1517.  https://doi.org/10.1084/jem.20112691 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Williams MA, Ravkov EV, Bevan MJ (2008) Rapid culling of the CD4+ T cell repertoire in the transition from effector to memory. Immunity 28(4):533–545.  https://doi.org/10.1016/j.immuni.2008.02.014 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Winter O, Dame C, Jundt F, Hiepe F (2012) Pathogenic long-lived plasma cells and their survival niches in autoimmunity, malignancy, and allergy. J Immunol 189(11):5105–5111.  https://doi.org/10.4049/jimmunol.1202317 PubMedCrossRefGoogle Scholar
  112. Wisniewski JA, Commins SP, Agrawal R, Hulse KE, Yu MD, Cronin J, Heymann PW, Pomes A, Platts-Mills TA, Workman L, Woodfolk JA (2015) Analysis of cytokine production by peanut-reactive T cells identifies residual Th2 effectors in highly allergic children who received peanut oral immunotherapy. Clin Exp Allergy 45(7):1201–1213.  https://doi.org/10.1111/cea.12537 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Xiong H, Dolpady J, Wabl M, Curotto de Lafaille MA, Lafaille JJ (2012) Sequential class switching is required for the generation of high affinity IgE antibodies. J Exp Med 209(2):353–364.  https://doi.org/10.1084/jem.20111941 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Yang Z, Sullivan BM, Allen CD (2012) Fluorescent in vivo detection reveals that IgE(+) B cells are restrained by an intrinsic cell fate predisposition. Immunity 36(5):857–872.  https://doi.org/10.1016/j.immuni.2012.02.009 PubMedCrossRefGoogle Scholar
  115. Yang Z, Robinson MJ, Allen CD (2014) Regulatory constraints in the generation and differentiation of IgE-expressing B cells. Curr Opin Immunol 28:64–70.  https://doi.org/10.1016/j.coi.2014.02.001 PubMedCrossRefGoogle Scholar
  116. Yang Z, Robinson MJ, Chen X, Smith GA, Taunton J, Liu W, Allen CD (2016) Regulation of B cell fate by chronic activity of the IgE B cell receptor. Elife 5.  https://doi.org/10.7554/eLife.21238
  117. Yoshida T, Mei H, Dorner T, Hiepe F, Radbruch A, Fillatreau S, Hoyer BF (2010) Memory B and memory plasma cells. Immunol Rev 237(1):117–139.  https://doi.org/10.1111/j.1600-065X.2010.00938.x PubMedCrossRefGoogle Scholar
  118. Zuccarino-Catania GV, Sadanand S, Weisel FJ, Tomayko MM, Meng H, Kleinstein SH, Good-Jacobson KL, Shlomchik MJ (2014) CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype. Nat Immunol 15(7):631–637.  https://doi.org/10.1038/ni.2914 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.McMaster Immunology Research Centre (MIRC)McMaster UniversityHamiltonCanada
  2. 2.Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonCanada
  3. 3.Department of MedicineMcMaster UniversityHamiltonCanada

Personalised recommendations