Parasite Mediated Protection Against Allergy

  • Julia Esser-von BierenEmail author
Part of the Birkhäuser Advances in Infectious Diseases book series (BAID)


Throughout evolution, mammals have been exposed to large multicellular worm parasites (helminths). This co-evolution has resulted in a well-balanced network of host-parasite interactions that shape the host’s immune system. In particular, helminth parasites have acquired an impressive repertoire of immunomodulatory strategies to ensure their own survival and reproduction whilst avoiding excessive harm to their host. Moreover, work over the recent decades has shown that the immunomodulatory potential of helminths may not only entail an intriguing capacity for immune evasion, but also provide a means to protect against chronic inflammatory diseases. Allergy is driven by pathological type 2 immune responses, including type 2 cytokine production, IgE class switching, mast cell activation as well as eosinophil recruitment and activation, which are also at play during helminth infection. The overlap between pathological mechanisms of allergy and protective immune mechanisms targeted at parasite killing or expulsion may provide an (evolutionary) explanation for the potential of helminths to suppress allergic inflammation. This chapter will describe the epidemiological and mechanistic basis of parasite-mediated protection against allergy with a focus on the cellular mechanisms employed by helminth parasites to suppress type 2 inflammation.


  1. Ahumada V, García E, Dennis R, Rojas MX, Rondón MA, Pérez A, Peñaranda A, Barragán AM, Jimenez S, Kennedy MW, Caraballo L (2015) IgE responses to Ascaris and mite tropomyosins are risk factors for asthma. Clin Exp Allergy 45:1189–1200. CrossRefPubMedGoogle Scholar
  2. Allen JE, Maizels RM (2011) Diversity and dialogue in immunity to helminths. Nat Rev Immunol 11:375–388. CrossRefPubMedGoogle Scholar
  3. Amu S, Saunders SP, Kronenberg M, Mangan NE, Atzberger A, Fallon PG (2010) Regulatory B cells prevent and reverse allergic airway inflammation via FoxP3-positive T regulatory cells in a murine model. J Allergy Clin Immunol 125:1114–1124.e8. CrossRefPubMedGoogle Scholar
  4. Araújo CA, Perini A, Martins MA, Macedo MS, Macedo-Soares MF (2008) PAS-1, a protein from Ascaris suum, modulates allergic inflammation via IL-10 and IFN-gamma, but not IL-12. Cytokine 44:335–341. CrossRefPubMedGoogle Scholar
  5. Bager P, Arnved J, Rønborg S, Wohlfahrt J, Poulsen LK, Westergaard T, Petersen HW, Kristensen B, Thamsborg S, Roepstorff A, Kapel C, Melbye M (2010) Trichuris suis ova therapy for allergic rhinitis: a randomized, double-blind, placebo-controlled clinical trial. J Allergy Clin Immunol 125:123–130. CrossRefPubMedGoogle Scholar
  6. Campbell EL, Bruyninckx WJ, Kelly CJ, Glover LE, McNamee EN, Bowers BE, Bayless AJ, Scully M, Saeedi BJ, Golden-Mason L, Ehrentraut SF, Curtis VF, Burgess A, Garvey JF, Sorensen A, Nemenoff R, Jedlicka P, Taylor CT, Kominsky DJ, Colgan SP (2014) Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 40:66–77. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cardoso LS, Oliveira SC, Pacífico LGG, Góes AM, Oliveira RR, Fonseca CT, Carvalho EM d, Araújo MI (2006) Schistosoma mansoni antigen-driven interleukin-10 production in infected asthmatic individuals. Mem Inst Oswaldo Cruz 101(Suppl 1):339–343CrossRefPubMedGoogle Scholar
  8. Cardoso FC, Macedo GC, Gava E, Kitten GT, Mati VL, de Melo AL, Caliari MV, Almeida GT, Venancio TM, Verjovski-Almeida S, Oliveira SC (2008) Schistosoma mansoni tegument protein Sm29 is able to induce a Th1-type of immune response and protection against parasite infection. PLoS Negl Trop Dis 2:e308. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cardoso LS, Oliveira SC, Góes AM, Oliveira RR, Pacífico LG, Marinho FV, Fonseca CT, Cardoso FC, Carvalho EM, Araujo MI (2010) Schistosoma mansoni antigens modulate the allergic response in a murine model of ovalbumin-induced airway inflammation. Clin Exp Immunol 160:266–274. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chen F, Liu Z, Wu W, Rozo C, Bowdridge S, Millman A, Van Rooijen N, Urban JF Jr, Wynn TA, Gause WC (2012) An essential role for T(H)2-type responses in limiting acute tissue damage during experimental helminth infection. Nat Med.
  11. Cho MK, Park MK, Kang SA, Park SK, Lyu JH, Kim D-H, Park H-K, Yu HS (2015) TLR2-dependent amelioration of allergic airway inflammation by parasitic nematode type II MIF in mice. Parasite Immunol 37:180–191. CrossRefPubMedGoogle Scholar
  12. Cooper PJ, Chico ME, Rodrigues LC, Ordonez M, Strachan D, Griffin GE, Nutman TB (2003) Reduced risk of atopy among school-age children infected with geohelminth parasites in a rural area of the tropics. J Allergy Clin Immunol 111:995–1000CrossRefPubMedGoogle Scholar
  13. Cooper PJ, Chico ME, Amorim LD, Sandoval C, Vaca M, Strina A, Campos AC, Rodrigues LC, Barreto ML, Strachan DP (2016) Effects of maternal geohelminth infections on allergy in early childhood. J Allergy Clin Immunol 137:899–906.e2. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dainichi T, Maekawa Y, Ishii K, Zhang T, Nashed BF, Sakai T, Takashima M, Himeno K (2001) Nippocystatin, a cysteine protease inhibitor from Nippostrongylus brasiliensis, inhibits antigen processing and modulates antigen-specific immune response. Infect Immun 69:7380–7386. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Daniłowicz-Luebert E, Steinfelder S, Kühl AA, Drozdenko G, Lucius R, Worm M, Hamelmann E, Hartmann S (2013) A nematode immunomodulator suppresses grass pollen-specific allergic responses by controlling excessive Th2 inflammation. Int J Parasitol 43:201–210. CrossRefPubMedGoogle Scholar
  16. de Araújo CAA, Perini A, Martins MA, Macedo MS, Macedo-Soares MF (2010) PAS-1, an Ascaris suum protein, modulates allergic airway inflammation via CD8+γδTCR+ and CD4+CD25+FoxP3+ T cells. Scand J Immunol 72:491–503. CrossRefPubMedGoogle Scholar
  17. Dittrich AM, Erbacher A, Specht S, Diesner F, Krokowski M, Avagyan A, Stock P, Ahrens B, Hoffmann WH, Hoerauf A, Hamelmann E (2008) Helminth infection with Litomosoides sigmodontis induces regulatory T cells and inhibits allergic sensitization, airway inflammation, and hyperreactivity in a murine asthma model. J Immunol 180(3):1792–1799Google Scholar
  18. Enobe CS, Araújo CA, Perini A, Martins MA, Macedo MS, Macedo-Soares MF (2006) Early stages of Ascaris suum induce airway inflammation and hyperreactivity in a mouse model. Parasite Immunol 28:453–461. CrossRefPubMedGoogle Scholar
  19. Esser-von Bieren J, Mosconi I, Guiet R, Piersgilli A, Volpe B, Chen F, Gause WC, Seitz A, Verbeek JS, Harris NL (2013) Antibodies trap tissue migrating helminth larvae and prevent tissue damage by driving IL-4Rα-independent alternative differentiation of macrophages. PLoS Pathog 9:e1003771. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Esser-von Bieren J, Volpe B, Sutherland DB, Bürgi J, Verbeek JS, Marsland BJ, Urban JF, Harris NL (2015) Immune antibodies and helminth products drive CXCR2-dependent macrophage-myofibroblast crosstalk to promote intestinal repair. PLoS Pathog 11:e1004778. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Evans H, Mitre E (2015) Worms as therapeutic agents for allergy and asthma: understanding why benefits in animal studies have not translated into clinical success. J Allergy Clin Immunol 135:343–353. CrossRefPubMedGoogle Scholar
  22. Everts B, Perona-Wright G, Smits HH, Hokke CH, van der Ham AJ, Fitzsimmons CM, Doenhoff MJ, van der Bosch J, Mohrs K, Haas H, Mohrs M, Yazdanbakhsh M, Schramm G (2009) Omega-1, a glycoprotein secreted by Schistosoma mansoni eggs, drives Th2 responses. J Exp Med 206:1673–1680. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Feary JR, Venn AJ, Mortimer K, Brown AP, Hooi D, Falcone FH, Pritchard DI, Britton JR (2010) Experimental hookworm infection: a randomized placebo-controlled trial in asthma. Clin Exp Allergy 40:299–306. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fleming JO, Weinstock JV (2015) Clinical trials of helminth therapy in autoimmune diseases: rationale and findings. Parasite Immunol 37:277–292. CrossRefPubMedGoogle Scholar
  25. Geering B, Stoeckle C, Conus S, Simon H-U (2013) Living and dying for inflammation: neutrophils, eosinophils, basophils. Trends Immunol 34:398–409. CrossRefPubMedGoogle Scholar
  26. Grainger JR, Smith KA, Hewitson JP, McSorley HJ, Harcus Y, Filbey KJ, Finney CAM, Greenwood EJD, Knox DP, Wilson MS, Belkaid Y, Rudensky AY, Maizels RM (2010) Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-β pathway. J Exp Med 207:2331–2341. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hartmann S, Schnoeller C, Dahten A, Avagyan A, Rausch S, Lendner M, Bocian C, Pillai S, Loddenkemper C, Lucius R, Worm M, Hamelmann E (2009) Gastrointestinal nematode infection interferes with experimental allergic airway inflammation but not atopic dermatitis. Clin Exp Allergy 39:1585–1596. CrossRefPubMedGoogle Scholar
  28. Hayes KS, Bancroft AJ, Goldrick M, Portsmouth C, Roberts IS, Grencis RK (2010) Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris. Science 328:1391–1394. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hirsch C, Zouain CS, Alves JB, Goes AM (1997) Induction of protective immunity and modulation of granulomatous hypersensitivity in mice using PIII, an anionic fraction of Schistosoma mansoni adult worm. Parasitology 115(Pt 1):21–28CrossRefPubMedGoogle Scholar
  30. Humphreys NE, Xu D, Hepworth MR, Liew FY, Grencis RK (2008) IL-33, a potent inducer of adaptive immunity to intestinal nematodes. J Immunol Baltim Md 1950(180):2443–2449Google Scholar
  31. Itami DM, Oshiro TM, Araujo CA, Perini A, Martins MA, Macedo MS, Macedo-Soares MF (2005) Modulation of murine experimental asthma by Ascaris suum components. Clin Exp Allergy 35:873–879. CrossRefPubMedGoogle Scholar
  32. Jeong Y-I, Kim SH, Ju JW, Cho SH, Lee WJ, Park JW, Park Y-M, Lee SE (2011) Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions. Biochem Biophys Res Commun 407:793–800. CrossRefPubMedGoogle Scholar
  33. Ji P, Hu H, Yang X, Wei X, Zhu C, Liu J, Feng Y, Yang F, Okanurak K, Li N, Zeng X, Zheng H, Wu Z, Lv Z (2015) AcCystatin, an immunoregulatory molecule from Angiostrongylus cantonensis, ameliorates the asthmatic response in an aluminium hydroxide/ovalbumin-induced rat model of asthma. Parasitol Res 114:613–624. CrossRefPubMedGoogle Scholar
  34. Kim HY, Chang Y-J, Subramanian S, Lee H-H, Albacker LA, Matangkasombut P, Savage PB, McKenzie ANJ, Smith DE, Rottman JB, DeKruyff RH, Umetsu DT (2012) Innate lymphoid cells responding to IL-33 mediate airway hyperreactivity independently of adaptive immunity. J Allergy Clin Immunol 129:216–227. CrossRefPubMedGoogle Scholar
  35. Kitagaki K, Businga TR, Racila D, Elliott DE, Weinstock JV, Kline JN (2006) Intestinal helminths protect in a murine model of asthma. J Immunol Baltim Md 1950(177):1628–1635Google Scholar
  36. Klein Wolterink RGJ, Kleinjan A, van Nimwegen M, Bergen I, de Bruijn M, Levani Y, Hendriks RW (2012) Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma. Eur J Immunol 42:1106–1116. CrossRefPubMedGoogle Scholar
  37. Klotz C, Ziegler T, Figueiredo AS, Rausch S, Hepworth MR, Obsivac N, Sers C, Lang R, Hammerstein P, Lucius R, Hartmann S (2011) A helminth immunomodulator exploits host signaling events to regulate cytokine production in macrophages. PLoS Pathog 7:e1001248. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kvarnhammar AM, Cardell LO (2012) Pattern-recognition receptors in human eosinophils. Immunology 136:11–20. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Larson D, Hübner MP, Torrero MN, Morris CP, Brankin A, Swierczewski BE, Davies SJ, Vonakis BM, Mitre E (2012) Chronic helminth infection reduces basophil responsiveness in an IL-10-dependent manner. J Immunol Baltim Md 1950.
  40. Layland LE, Straubinger K, Ritter M, Loffredo-Verde E, Garn H, Sparwasser T, Prazeres da Costa C (2013) Schistosoma mansoni-mediated suppression of allergic airway inflammation requires patency and Foxp3+ Treg cells. PLoS Negl Trop Dis 7:e2379. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Levin M, Muloiwa R, Le Souëf P, Motala C (2012) Ascaris sensitization is associated with aeroallergen sensitization and airway hyperresponsiveness but not allergic disease in urban Africa. J Allergy Clin Immunol 130:265–267. CrossRefPubMedGoogle Scholar
  42. Liu P, Li J, Yang X, Shen Y, Zhu Y, Wang S, Wu Z, Liu X, An G, Ji W, Gao W, Yang X (2010) Helminth infection inhibits airway allergic reaction and dendritic cells are involved in the modulation process. Parasite Immunol 32:57–66. CrossRefPubMedGoogle Scholar
  43. Liu J-Y, Lu P, Hu L-Z, Shen Y-J, Zhu Y-J, Ren J-L, Ji W-H, Zhang X-Z, Wu Z-Q, Yang X-Z, Yang J, Li L-Y, Yang X, Liu P-M (2014) CD8α¯ DC is the major DC subset which mediates inhibition of allergic responses by Schistosoma infection. Parasite Immunol 36:647–657. CrossRefPubMedGoogle Scholar
  44. Magalhães KG, Almeida PE, Atella GC, Maya-Monteiro CM, Castro-Faria-Neto HC, Pelajo-Machado M, Lenzi HL, Bozza MT, Bozza PT (2010) Schistosomal-derived lysophosphatidylcholine are involved in eosinophil activation and recruitment through Toll-like receptor-2-dependent mechanisms. J Infect Dis 202:1369–1379. CrossRefPubMedGoogle Scholar
  45. Maizels RM (2016) Parasitic helminth infections and the control of human allergic and autoimmune disorders. Clin Microbiol Infect 22:481–486. CrossRefPubMedGoogle Scholar
  46. Mangan NE, van Rooijen N, McKenzie ANJ, Fallon PG (2006) Helminth-modified pulmonary immune response protects mice from allergen-induced airway hyperresponsiveness. J Immunol Baltim Md 1950(176):138–147Google Scholar
  47. Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11:519–531. CrossRefPubMedGoogle Scholar
  48. Massacand JC, Stettler RC, Meier R, Humphreys NE, Grencis RK, Marsland BJ, Harris NL (2009) Helminth products bypass the need for TSLP in Th2 immune responses by directly modulating dendritic cell function. Proc Natl Acad Sci USA 106:13968–13973. CrossRefPubMedPubMedCentralGoogle Scholar
  49. McConchie BW, Norris HH, Bundoc VG, Trivedi S, Boesen A, Urban JF, Keane-Myers AM (2006) Ascaris suum-derived products suppress mucosal allergic inflammation in an interleukin-10-independent manner via interference with dendritic cell function. Infect Immun 74:6632–6641. CrossRefPubMedPubMedCentralGoogle Scholar
  50. McSorley HJ, O’Gorman MT, Blair N, Sutherland TE, Filbey KJ, Maizels RM (2012) Suppression of type 2 immunity and allergic airway inflammation by secreted products of the helminth Heligmosomoides polygyrus. Eur J Immunol.
  51. McSorley HJ, Blair NF, Smith KA, McKenzie ANJ, Maizels RM (2014) Blockade of IL-33 release and suppression of type 2 innate lymphoid cell responses by helminth secreted products in airway allergy. Mucosal Immunol 7:1068–1078. CrossRefPubMedPubMedCentralGoogle Scholar
  52. McSorley HJ, Blair NF, Robertson E, Maizels RM (2015) Suppression of OVA-alum induced allergy by heligmosomoides polygyrus products is MyD88-, TRIF-, regulatory t- and b cell-independent, but is associated with reduced innate lymphoid cell activation. Exp Parasitol.
  53. Medeiros M Jr, Figueiredo JP, Almeida MC, Matos MA, Araújo MI, Cruz AA, Atta AM, Rego MAV, de Jesus AR, Taketomi EA, Carvalho EM (2003) Schistosoma mansoni infection is associated with a reduced course of asthma. J Allergy Clin Immunol 111:947–951CrossRefPubMedGoogle Scholar
  54. Melendez AJ, Harnett MM, Pushparaj PN, Wong WSF, Tay HK, McSharry CP, Harnett W (2007) Inhibition of Fc epsilon RI-mediated mast cell responses by ES-62, a product of parasitic filarial nematodes. Nat Med 13:1375–1381. CrossRefPubMedGoogle Scholar
  55. Mitre E, Norwood S, Nutman TB (2005) Saturation of immunoglobulin E (IgE) binding sites by polyclonal IgE does not explain the protective effect of helminth infections against atopy. Infect Immun 73:4106–4111. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Murray PJ (2016) Macrophage polarization. Annu Rev Physiol.
  57. Navarro S, Pickering DA, Ferreira IB, Jones L, Ryan S, Troy S, Leech A, Hotez PJ, Zhan B, Laha T, Prentice R, Sparwasser T, Croese J, Engwerda CR, Upham JW, Julia V, Giacomin PR, Loukas A (2016) Hookworm recombinant protein promotes regulatory T cell responses that suppress experimental asthma. Sci Transl Med 8:362ra143. CrossRefPubMedGoogle Scholar
  58. Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TKA, Bucks C, Kane CM, Fallon PG, Pannell R, Jolin HE, McKenzie ANJ (2010) Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464:1367–1370. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Nieuwenhuizen NE, Lopata AL (2014) Allergic reactions to Anisakis found in fish. Curr Allergy Asthma Rep 14:455. CrossRefPubMedGoogle Scholar
  60. Nogueira DS, Gazzinelli-Guimarães PH, Barbosa FS, Resende NM, Silva CC, de Oliveira LM, Amorim CCO, Oliveira FMS, Mattos MS, Kraemer LR, Caliari MV, Gaze S, Bueno LL, Russo RC, Fujiwara RT (2016) Multiple exposures to Ascaris suum induce tissue injury and mixed Th2/Th17 immune response in mice. PLoS Negl Trop Dis 10:e0004382. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Nyan OA, Walraven GE, Banya WA, Milligan P, Van Der Sande M, Ceesay SM, Del Prete G, McAdam KP (2001) Atopy, intestinal helminth infection and total serum IgE in rural and urban adult Gambian communities. Clin Exp Allergy 31:1672–1678CrossRefPubMedGoogle Scholar
  62. Obeng BB, Amoah AS, Larbi IA, de Souza DK, Uh H-W, Fernández-Rivas M, van Ree R, Rodrigues LC, Boakye DA, Yazdanbakhsh M, Hartgers FC (2014) Schistosome infection is negatively associated with mite atopy, but not wheeze and asthma in Ghanaian schoolchildren. Clin Exp Allergy 44:965–975. CrossRefPubMedGoogle Scholar
  63. Obihara CC, Beyers N, Gie RP, Hoekstra MO, Fincham JE, Marais BJ, Lombard CJ, Dini LA, Kimpen JLL (2006) Respiratory atopic disease, Ascaris-immunoglobulin E and tuberculin testing in urban South African children. Clin Exp Allergy 36:640–648. CrossRefPubMedGoogle Scholar
  64. Park SK, Cho MK, Park H-K, Lee KH, Lee SJ, Choi SH, Ock MS, Jeong HJ, Lee MH, Yu HS (2009) Macrophage migration inhibitory factor homologs of anisakis simplex suppress Th2 response in allergic airway inflammation model via CD4+CD25+Foxp3+ T cell recruitment. J Immunol Baltim Md 1950(182):6907–6914. Google Scholar
  65. Patnode ML, Bando JK, Krummel MF, Locksley RM, Rosen SD (2014) Leukotriene B4 amplifies eosinophil accumulation in response to nematodes. J Exp Med 211:1281–1288. CrossRefPubMedPubMedCentralGoogle Scholar
  66. Perdiguero EG, Geissmann F (2016) The development and maintenance of resident macrophages. Nat Immunol 17:2–8. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Pinot de Moira A, Fitzsimmons CM, Jones FM, Wilson S, Cahen P, Tukahebwa E, Mpairwe H, Mwatha JK, Bethony JM, Skov PS, Kabatereine NB, Dunne DW (2014) Suppression of basophil histamine release and other IgE-dependent responses in childhood Schistosoma mansoni/hookworm coinfection. J Infect Dis 210:1198–1206. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Salimi M, Barlow JL, Saunders SP, Xue L, Gutowska-Owsiak D, Wang X, Huang L-C, Johnson D, Scanlon ST, McKenzie ANJ, Fallon PG, Ogg GS (2013) A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med 210:2939–2950. CrossRefPubMedPubMedCentralGoogle Scholar
  69. Schierack P, Lucius R, Sonnenburg B, Schilling K, Hartmann S (2003) Parasite-specific immunomodulatory functions of filarial cystatin. Infect Immun 71:2422–2429CrossRefPubMedPubMedCentralGoogle Scholar
  70. Schmiedel Y, Mombo-Ngoma G, Labuda LA, Janse JJ, de Gier B, Adegnika AA, Issifou S, Kremsner PG, Smits HH, Yazdanbakhsh M (2015) CD4+CD25hiFOXP3+ regulatory T cells and cytokine responses in human schistosomiasis before and after treatment with praziquantel. PLoS Negl Trop Dis 9:e0003995. CrossRefPubMedPubMedCentralGoogle Scholar
  71. Schnoeller C, Rausch S, Pillai S, Avagyan A, Wittig BM, Loddenkemper C, Hamann A, Hamelmann E, Lucius R, Hartmann S (2008) A helminth immunomodulator reduces allergic and inflammatory responses by induction of IL-10-producing macrophages. J Immunol Baltim Md 1950(180):4265–4272Google Scholar
  72. Scrivener S, Yemaneberhan H, Zebenigus M, Tilahun D, Girma S, Ali S, McElroy P, Custovic A, Woodcock A, Pritchard D, Venn A, Britton J (2001) Independent effects of intestinal parasite infection and domestic allergen exposure on risk of wheeze in Ethiopia: a nested case-control study. Lancet 358:1493–1499. CrossRefPubMedGoogle Scholar
  73. Smits HH, Hammad H, van Nimwegen M, Soullie T, Willart MA, Lievers E, Kadouch J, Kool M, Kos-van Oosterhoud J, Deelder AM, Lambrecht BN, Yazdanbakhsh M (2007) Protective effect of Schistosoma mansoni infection on allergic airway inflammation depends on the intensity and chronicity of infection. J Allergy Clin Immunol 120:932–940. CrossRefPubMedGoogle Scholar
  74. Stein M, Greenberg Z, Boaz M, Handzel ZT, Meshesha MK, Bentwich Z (2016) The role of helminth infection and environment in the development of allergy: a prospective study of newly-arrived Ethiopian immigrants in Israel. PLoS Negl Trop Dis 10:e0004208. CrossRefPubMedPubMedCentralGoogle Scholar
  75. Steinfelder S, Andersen JF, Cannons JL, Feng CG, Joshi M, Dwyer D, Caspar P, Schwartzberg PL, Sher A, Jankovic D (2009) The major component in Schistosome eggs responsible for conditioning dendritic cells for Th2 polarization is a T2 ribonuclease (omega-1). J Exp Med 206:1681–1690. CrossRefPubMedPubMedCentralGoogle Scholar
  76. Straubinger K, Paul S, Prazeres da Costa O, Ritter M, Buch T, Busch DH, Layland LE, Prazeres da Costa CU (2014) Maternal immune response to helminth infection during pregnancy determines offspring susceptibility to allergic airway inflammation. J Allergy Clin Immunol.
  77. Suzuki M, Hara M, Ichikawa S, Kamijo S, Nakazawa T, Hatanaka H, Akiyama K, Ogawa H, Okumura K, Takai T (2016) Presensitization to Ascaris antigens promotes induction of mite-specific IgE upon mite antigen inhalation in mice. Allergol Int 65:44–51. CrossRefPubMedGoogle Scholar
  78. Tamarozzi F, Wright HL, Johnston KL, Edwards SW, Turner JD, Taylor MJ (2014) Human filarial Wolbachia lipopeptide directly activates human neutrophils in vitro. Parasite Immunol 36:494–502. CrossRefPubMedPubMedCentralGoogle Scholar
  79. Thomas CJ, Schroder K (2013) Pattern recognition receptor function in neutrophils. Trends Immunol 34:317–328. CrossRefPubMedGoogle Scholar
  80. Trujillo-Vargas CM, Werner-Klein M, Wohlleben G, Polte T, Hansen G, Ehlers S, Erb KJ (2007) Helminth-derived products inhibit the development of allergic responses in mice. Am J Respir Crit Care Med 175:336–344. CrossRefPubMedGoogle Scholar
  81. van den Biggelaar AH, van Ree R, Rodrigues LC, Lell B, Deelder AM, Kremsner PG, Yazdanbakhsh M (2000) Decreased atopy in children infected with Schistosoma haematobium: a role for parasite-induced interleukin-10. Lancet 356:1723–1727. CrossRefPubMedGoogle Scholar
  82. van der Kleij D, Latz E, Brouwers JFHM, Kruize YCM, Schmitz M, Kurt-Jones EA, Espevik T, de Jong EC, Kapsenberg ML, Golenbock DT, Tielens AGM, Yazdanbakhsh M (2002) A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates toll-like receptor 2 and affects immune polarization. J Biol Chem 277:48122–48129. CrossRefPubMedGoogle Scholar
  83. van der Vlugt LEPM, Labuda LA, Ozir-Fazalalikhan A, Lievers E, Gloudemans AK, Liu K-Y, Barr TA, Sparwasser T, Boon L, Ngoa UA, Feugap EN, Adegnika AA, Kremsner PG, Gray D, Yazdanbakhsh M, Smits HH (2012) Schistosomes induce regulatory features in human and mouse CD1d(hi) B cells: inhibition of allergic inflammation by IL-10 and regulatory T cells. PloS One 7:e30883. CrossRefPubMedPubMedCentralGoogle Scholar
  84. van Stijn CMW, Meyer S, van den Broek M, Bruijns SCM, van Kooyk Y, Geyer R, van Die I (2010) Schistosoma mansoni worm glycolipids induce an inflammatory phenotype in human dendritic cells by cooperation of TLR4 and DC-SIGN. Mol Immunol 47:1544–1552. CrossRefPubMedGoogle Scholar
  85. Velupillai P, Harn DA (1994) Oligosaccharide-specific induction of interleukin 10 production by B220+ cells from schistosome-infected mice: a mechanism for regulation of CD4+ T-cell subsets. Proc Natl Acad Sci USA 91:18–22CrossRefPubMedPubMedCentralGoogle Scholar
  86. Wammes LJ, Hamid F, Wiria AE, May L, Kaisar MMM, Prasetyani-Gieseler MA, Djuardi Y, Wibowo H, Kruize YCM, Verweij JJ, de Jong SE, Tsonaka R, Houwing-Duistermaat JJ, Sartono E, Luty AJF, Supali T, Yazdanbakhsh M (2016) Community deworming alleviates geohelminth-induced immune hyporesponsiveness. Proc Natl Acad Sci USA 113:12526–12531. CrossRefPubMedPubMedCentralGoogle Scholar
  87. Wang X, Zhou S, Chi Y, Wen X, Hoellwarth J, He L, Liu F, Wu C, Dhesi S, Zhao J, Hu W, Su C (2009) CD4+CD25+ Treg induction by an HSP60-derived peptide SJMHE1 from Schistosoma japonicum is TLR2 dependent. Eur J Immunol 39:3052–3065. CrossRefPubMedGoogle Scholar
  88. Wilson MS, Taylor MD, Balic A, Finney CAM, Lamb JR, Maizels RM (2005) Suppression of allergic airway inflammation by helminth-induced regulatory T cells. J Exp Med 202:1199–1212. CrossRefPubMedPubMedCentralGoogle Scholar
  89. Wilson MS, Taylor MD, O’Gorman MT, Balic A, Barr TA, Filbey K, Anderton SM, Maizels RM (2010) Helminth-induced CD19+CD23hi B cells modulate experimental allergic and autoimmune inflammation. Eur J Immunol 40:1682–1696. CrossRefPubMedPubMedCentralGoogle Scholar
  90. Wohlleben G, Trujillo C, Müller J, Ritze Y, Grunewald S, Tatsch U, Erb KJ (2004) Helminth infection modulates the development of allergen-induced airway inflammation. Int Immunol 16:585–596CrossRefPubMedGoogle Scholar
  91. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L, Ganesan H, Nino-Castro A, Mallmann MR, Labzin L, Theis H, Kraut M, Beyer M, Latz E, Freeman TC, Ulas T, Schultze JL (2014) Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40:274–288. CrossRefPubMedPubMedCentralGoogle Scholar
  92. Yang J, Zhao J, Yang Y, Zhang L, Yang X, Zhu X, Ji M, Sun N, Su C (2007) Schistosoma japonicum egg antigens stimulate CD4 CD25 T cells and modulate airway inflammation in a murine model of asthma. Immunology 120:8–18. CrossRefPubMedPubMedCentralGoogle Scholar
  93. Yazdanbakhsh M, Kremsner PG, van Ree R (2002) Allergy, parasites, and the hygiene hypothesis. Science 296:490–494. CrossRefPubMedGoogle Scholar
  94. Young MC (2015) Taking the leap earlier: the timing of tolerance. Curr Opin Pediatr 27:736–740. CrossRefPubMedGoogle Scholar
  95. Zaiss MM, Rapin A, Lebon L, Dubey LK, Mosconi I, Sarter K, Piersigilli A, Menin L, Walker AW, Rougemont J, Paerewijck O, Geldhof P, McCoy KD, Macpherson AJ, Croese J, Giacomin PR, Loukas A, Junt T, Marsland BJ, Harris NL (2015) The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation. Immunity 43:998–1010. CrossRefPubMedPubMedCentralGoogle Scholar
  96. Ziegler T, Rausch S, Steinfelder S, Klotz C, Hepworth MR, Kühl AA, Burda P-C, Lucius R, Hartmann S (2015) A novel regulatory macrophage induced by a helminth molecule instructs IL-10 in CD4+ T cells and protects against mucosal inflammation. J Immunol Baltim Md 1950(194):1555–1564. Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Center of Allergy and Environment (ZAUM)Technical University of Munich and Helmholtz Center MunichMunichGermany

Personalised recommendations