Advertisement

Bacterial Allergens

  • Gómez-Gascón LidiaEmail author
  • Barbara M. Bröker
Chapter
  • 407 Downloads
Part of the Birkhäuser Advances in Infectious Diseases book series (BAID)

Abstract

According to the hygiene hypothesis, bacterial infection as well as exposure to a complex microbial environment early in life confer protection from allergy. On the flip side of the coin, colonization and infection by certain bacterial species have been associated with an increased risk of allergy development as well as with exacerbations of allergic symptoms. Moreover, bacteria themselves and their products can become targets of allergic immune responses, eliciting the generation of specific Th2 cells and IgE. Some bacterial factors are even able to trigger allergic inflammation in animal models, suggesting that they are true allergens. This review summarizes the state of the art regarding pro-allergenic properties of bacteria.

Keywords

Allergy Asthma Cystic fibrosis Bacterial allergens T-helper type 2 

References

  1. Ahren IL, Eriksson E, Egesten A, Riesbeck K (2003) Nontypeable Haemophilus influenzae activates human eosinophils through beta-glucan receptors. Am J Respir Cell Mol Biol 29(5):598–605. https://doi.org/10.1165/rcmb.2002-0138OC CrossRefPubMedGoogle Scholar
  2. Atkinson TP (2013) Is asthma an infectious disease? New evidence. Curr Allergy Asthma Rep 13(6):702–709. https://doi.org/10.1007/s11882-013-0390-8 CrossRefPubMedGoogle Scholar
  3. Bach JF (2002) The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 347(12):911–920. https://doi.org/10.1056/NEJMra020100 CrossRefPubMedGoogle Scholar
  4. Bacher P, Heinrich F, Stervbo U, Nienen M, Vahldieck M, Iwert C et al (2016) Regulatory T cell specificity directs tolerance versus allergy against aeroantigens in humans. Cell 167(4):1067–1078.e1016. https://doi.org/10.1016/j.cell.2016.09.050
  5. Bachert C, Zhang N (2012) Chronic rhinosinusitis and asthma: novel understanding of the role of IgE ‘above atopy’. J Intern Med 272(2):133–143. https://doi.org/10.1111/j.1365-2796.2012.02559.x CrossRefPubMedGoogle Scholar
  6. Bachert C, Gevaert P, Holtappels G, Johansson SG, van Cauwenberge P (2001) Total and specific IgE in nasal polyps is related to local eosinophilic inflammation. J Allergy Clin Immunol 107(4):607–614. https://doi.org/10.1067/mai.2001.112374
  7. Bachert C, Gevaert P, Howarth P, Holtappels G, van Cauwenberge P, Johansson SG (2003) IgE to Staphylococcus aureus enterotoxins in serum is related to severity of asthma. J Allergy Clin Immunol 111:1131–1132CrossRefPubMedGoogle Scholar
  8. Barnes PJ (2009) Intrinsic asthma: not so different from allergic asthma but driven by superantigens? Clin Exp Allergy 39(8):1145–1151. https://doi.org/10.1111/j.1365-2222.2009.03298.x CrossRefPubMedGoogle Scholar
  9. Barnes PJ (2012) Severe asthma: advances in current management and future therapy. J Allergy Clin Immunol 129(1):48–59. https://doi.org/10.1016/j.jaci.2011.11.006 CrossRefPubMedGoogle Scholar
  10. Becker A, Kannan TR, Taylor AB, Pakhomova ON, Zhang Y, Somarajan SR et al (2015) Structure of CARDS toxin, a unique ADP-ribosylating and vacuolating cytotoxin from Mycoplasma pneumoniae. Proc Natl Acad Sci USA 112(16):5165–5170. https://doi.org/10.1073/pnas.1420308112
  11. Becker K, Heilmann C, Peters G (2014) Coagulase-negative staphylococci. Clin Microbiol Rev 27(4):870–926. https://doi.org/10.1128/cmr.00109-13 CrossRefPubMedCentralPubMedGoogle Scholar
  12. Birzele LT, Depner M, Ege MJ, Engel M, Kublik S, Bernau C et al (2017) Environmental and mucosal microbiota and their role in childhood asthma. Allergy 72(1):109–119. https://doi.org/10.1111/all.13002
  13. Bisgaard H, Hermansen MN, Buchvald F, Loland L, Halkjaer LB, Bonnelykke K et al (2007) Childhood asthma after bacterial colonization of the airway in neonates. N Engl J Med 357(15):1487–1495. https://doi.org/10.1056/NEJMoa052632
  14. Bisgaard H, Hermansen MN, Bonnelykke K, Stokholm J, Baty F, Skytt NL et al (2010) Association of bacteria and viruses with wheezy episodes in young children: prospective birth cohort study. BMJ 341:c4978. https://doi.org/10.1136/bmj.c4978
  15. Bluth MH, Robin J, Ruditsky M, Norowitz KB, Chice S, Pytlak E et al (2007) IgE anti-Borrelia burgdorferi components (p18, p31, p34, p41, p45, p60) and increased blood CD8+CD60+ T cells in children with Lyme disease. Scand J Immunol 65(4):376–382. https://doi.org/10.1111/j.1365-3083.2007.01904.x
  16. Brarda OA, Vanella LM, Boudet RV (1996) Anti-Staphylococcus aureus, anti-Streptococcus pneumoniae and anti-Moraxella catarrhalis specific IgE in asthmatic children. J Investig Allergol Clin Immunol 6(4):266–269PubMedGoogle Scholar
  17. Brazova J, Sediva A, Pospisilova D, Vavrova V, Pohunek P, Macek M Jr et al (2005) Differential cytokine profile in children with cystic fibrosis. Clin Immunol 115(2):210–215. https://doi.org/10.1016/j.clim.2005.01.013
  18. Chen CZ, Yang BC, Lin TM, Lee CH, Hsiue TR (2009) Chronic and repeated Chlamydophila pneumoniae lung infection can result in increasing IL-4 gene expression and thickness of airway subepithelial basement membrane in mice. J Formos Med Assoc 108(1):45–52. https://doi.org/10.1016/s0929-6646(09)60031-0 CrossRefPubMedGoogle Scholar
  19. Choi IS (2014) Immunomodulating approach to asthma using mycobacteria. Allergy Asthma Immunol Res 6(3):187–188. https://doi.org/10.4168/aair.2014.6.3.187 CrossRefPubMedCentralPubMedGoogle Scholar
  20. Choi IS, Koh YI (2002) Therapeutic effects of BCG vaccination in adult asthmatic patients: a randomized, controlled trial. Ann Allergy Asthma Immunol 88(6):584–591. https://doi.org/10.1016/S1081-1206(10)61890-X CrossRefPubMedGoogle Scholar
  21. Choi IS, Koh YI (2003) Effects of BCG revaccination on asthma. Allergy 58(11):1114–1116CrossRefPubMedGoogle Scholar
  22. Chu HW, Honour JM, Rawlinson CA, Harbeck RJ, Martin RJ (2003) Effects of respiratory Mycoplasma pneumoniae infection on allergen-induced bronchial hyperresponsiveness and lung inflammation in mice. Infect Immun 71(3):1520–1526CrossRefPubMedCentralPubMedGoogle Scholar
  23. Chu HW, Rino JG, Wexler RB, Campbell K, Harbeck RJ, Martin RJ (2005) Mycoplasma pneumoniae infection increases airway collagen deposition in a murine model of allergic airway inflammation. Am J Physiol Lung Cell Mol Physiol 289(1):L125–L133. https://doi.org/10.1152/ajplung.00167.2004 CrossRefPubMedGoogle Scholar
  24. Clementsen P, Milman N, Kilian M, Fomsgaard A, Baek L, Norn S (1990) Endotoxin from Haemophilus influenzae enhances IgE-mediated and non-immunological histamine release. Allergy 45(1):10–17CrossRefPubMedGoogle Scholar
  25. Darveaux JI, Lemanske RF Jr (2014) Infection-related asthma. J Allergy Clin Immunol Pract 2(6):658–663. https://doi.org/10.1016/j.jaip.2014.09.011 CrossRefPubMedCentralPubMedGoogle Scholar
  26. Davis MF, Peng RD, McCormack MC, Matsui EC (2015) Staphylococcus aureus colonization is associated with wheeze and asthma among US children and young adults. J Allergy Clin Immunol 135(3):811–813. e815. https://doi.org/10.1016/j.jaci.2014.10.052 CrossRefPubMedGoogle Scholar
  27. Dzhindzhikhashvili MS, Joks R, Smith-Norowitz T, Durkin HG, Chotikanatis K, Estrella E et al (2013) Doxycycline suppresses Chlamydia pneumoniae-mediated increases in ongoing immunoglobulin E and interleukin-4 responses by peripheral blood mononuclear cells of patients with allergic asthma. J Antimicrob Chemother 68(10):2363–2368. https://doi.org/10.1093/jac/dkt179
  28. Edwards MR, Bartlett NW, Hussell T, Openshaw P, Johnston SL (2012) The microbiology of asthma. Nat Rev Microbiol 10(7):459–471. https://doi.org/10.1038/nrmicro2801 CrossRefPubMedGoogle Scholar
  29. Emre U, Sokolovskaya N, Roblin PM, Schachter J, Hammerschlag MR (1995) Detection of anti-Chlamydia pneumoniae IgE in children with reactive airway disease. J Infect Dis 172(1):265–267CrossRefPubMedGoogle Scholar
  30. Epton MJ, Hales BJ, Thompson PJ, Thomas WR (2002) T cell cytokine responses to outer membrane proteins of Haemophilus influenzae and the house dust mite allergens Der p 1 in allergic and non-allergic subjects. Clin Exp Allergy 32(11):1589–1595CrossRefPubMedGoogle Scholar
  31. Foster TJ (2005) Immune evasion by staphylococci. Nature Rev Microbiol 3:948–958CrossRefGoogle Scholar
  32. Fraser J, Arcus V, Kong P, Baker E, Proft T (2000) Superantigens - powerful modifiers of the immune system. Mol Med Today 6(3):125–132CrossRefPubMedGoogle Scholar
  33. Fraser JD, Proft T (2008) The bacterial superantigen and superantigen-like proteins. Immunol Rev 225:226–243. https://doi.org/10.1111/j.1600-065X.2008.00681.x. IMR681 [pii]CrossRefPubMedGoogle Scholar
  34. Giavina-Bianchi P, Kalil J (2016) Mycoplasma pneumoniae infection induces asthma onset. J Allergy Clin Immunol 137(4):1024–1025. https://doi.org/10.1016/j.jaci.2015.11.011
  35. Grumann D, Nübel U, Bröker BM (2014) Staphylococcus aureus toxins-their functions and genetics. Infect Genet Evol 21:583–592. https://doi.org/10.1016/j.meegid.2013.03.013. S1567-1348(13)00086-5 [pii]CrossRefPubMedGoogle Scholar
  36. Gur D, Ozalp M, Sumerkan B, Kaygusuz A, Toreci K, Koksal I et al (2002) Prevalence of antimicrobial resistance in Haemophilus influenzae, Streptococcus pneumoniae, Moraxella catarrhalis and Streptococcus pyogenes: results of a multicentre study in Turkey. Int J Antimicrob Agents 19(3):207–211Google Scholar
  37. Gurung M, Moon DC, Choi CW, Lee JH, Bae YC, Kim J et al (2011) Staphylococcus aureus produces membrane-derived vesicles that induce host cell death. PLoS One 6(11):e27958. https://doi.org/10.1371/journal.pone.0027958
  38. Hahn DL, Peeling RW (2008) Airflow limitation, asthma, and Chlamydia pneumoniae-specific heat shock protein 60. Ann Allergy Asthma Immunol 101(6):614–618. https://doi.org/10.1016/s1081-1206(10)60224-4 CrossRefPubMedGoogle Scholar
  39. Hahn DL, Dodge RW, Golubjatnikov R (1991) Association of Chlamydia pneumoniae (strain TWAR) infection with wheezing, asthmatic bronchitis, and adult-onset asthma. JAMA 266(2):225–230CrossRefPubMedGoogle Scholar
  40. Hahn DL, Schure A, Patel K, Childs T, Drizik E, Webley W (2012) Chlamydia pneumoniae-specific IgE is prevalent in asthma and is associated with disease severity. PLoS One 7(4):e35945. https://doi.org/10.1371/journal.pone.0035945 CrossRefPubMedCentralPubMedGoogle Scholar
  41. Hales BJ, Pearce LJ, Kusel MM, Holt PG, Sly PD, Thomas WR (2008) Differences in the antibody response to a mucosal bacterial antigen between allergic and non-allergic subjects. Thorax 63(3):221–227. https://doi.org/10.1136/thx.2006.069492 CrossRefPubMedGoogle Scholar
  42. Hales BJ, Martin AC, Pearce LJ, Rueter K, Zhang G, Khoo SK et al (2009) Anti-bacterial IgE in the antibody responses of house dust mite allergic children convalescent from asthma exacerbation. Clin Exp Allergy 39(8):1170–1178. https://doi.org/10.1111/j.1365-2222.2009.03252.x
  43. Hales BJ, Chai LY, Elliot CE, Pearce LJ, Zhang G, Heinrich TK et al (2012) Antibacterial antibody responses associated with the development of asthma in house dust mite-sensitised and non-sensitised children. Thorax 67(4):321–327. https://doi.org/10.1136/thoraxjnl-2011-200650
  44. Hartl D, Griese M, Kappler M, Zissel G, Reinhardt D, Rebhan C et al (2006) Pulmonary T(H)2 response in Pseudomonas aeruginosa-infected patients with cystic fibrosis. J Allergy Clin Immunol 117(1):204–211. https://doi.org/10.1016/j.jaci.2005.09.023
  45. Hector A, Schafer H, Poschel S, Fischer A, Fritzsching B, Ralhan A et al (2015) Regulatory T-cell impairment in cystic fibrosis patients with chronic pseudomonas infection. Am J Respir Crit Care Med 191(8):914–923. https://doi.org/10.1164/rccm.201407-1381OC
  46. Hector A, Frey N, Hartl D (2016) Update on host-pathogen interactions in cystic fibrosis lung disease. Mol Cell Pediatr 3(1):12. https://doi.org/10.1186/s40348-016-0039-5
  47. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C et al (2010) Disordered microbial communities in asthmatic airways. PLoS One 5(1):e8578. https://doi.org/10.1371/journal.pone.0008578
  48. Hollams EM, Hales BJ, Bachert C, Huvenne W, Parsons F, de Klerk NH et al (2010) Th2-associated immunity to bacteria in teenagers and susceptibility to asthma. Eur Respir J 36(3):509–516. https://doi.org/10.1183/09031936.00184109
  49. Hong SW, Kim MR, Lee EY, Kim JH, Kim YS, Jeon SG et al (2011) Extracellular vesicles derived from Staphylococcus aureus induce atopic dermatitis-like skin inflammation. Allergy 66(3):351–359. https://doi.org/10.1111/j.1398-9995.2010.02483.x
  50. Hou AC, Lu Y, Sha L, Liu LG, Shen J, Xu Y (2003) T(H1) and T(H2) cells in children with mycoplasma pneumonia. Zhonghua Er Ke Za Zhi 41(9):652–656PubMedGoogle Scholar
  51. Huhti E, Mokka T, Nikoskelainen J, Halonen P (1974) Association of viral and mycoplasma infections with exacerbations of asthma. Ann Allergy 33(3):145–149PubMedGoogle Scholar
  52. Huvenne W, Hellings PW, Bachert C (2013) Role of staphylococcal superantigens in airway disease. Int Arch Allergy Immunol 161(4):304–314. https://doi.org/10.1159/000350329 CrossRefPubMedGoogle Scholar
  53. Ikezawa S (2001) Prevalence of Chlamydia pneumoniae in acute respiratory tract infection and detection of anti-Chlamydia pneumoniae-specific IgE in Japanese children with reactive airway disease. Kurume Med J 48(2):165–170CrossRefPubMedGoogle Scholar
  54. Ipci K, Altintoprak N, Muluk NB, Senturk M, Cingi C (2016) The possible mechanisms of the human microbiome in allergic diseases. Eur Arch Otorhinolaryngol 274(2):617–626. https://doi.org/10.1007/s00405-016-4058-6 CrossRefPubMedGoogle Scholar
  55. Johnston SL, Martin RJ (2005) Chlamydophila pneumoniae and Mycoplasma pneumoniae: a role in asthma pathogenesis? Am J Respir Crit Care Med 172(9):1078–1089. https://doi.org/10.1164/rccm.200412-1743PP CrossRefPubMedGoogle Scholar
  56. Juhn YJ, Frey D, Li X, Jacobson R (2012) Streptococcus pyogenes upper respiratory infection and atopic conditions other than asthma: a retrospective cohort study. Prim Care Respir J 21(2):153–158. https://doi.org/10.4104/pcrj.2011.00110 CrossRefPubMedGoogle Scholar
  57. Kalliomäki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E (2001) Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 357(9262):1076–1079. https://doi.org/10.1016/S0140-6736(00)04259-8 CrossRefPubMedGoogle Scholar
  58. Kim MR, Hong SW, Choi EB, Lee WH, Kim YS, Jeon SG et al (2012) Staphylococcus aureus-derived extracellular vesicles induce neutrophilic pulmonary inflammation via both Th1 and Th17 cell responses. Allergy 67(10):1271–1281. https://doi.org/10.1111/all.12001
  59. Kim YJ, Kim HJ, Kang MJ, Yu HS, Seo JH, Kim HY et al (2014) Bacillus Calmette-Guérin suppresses asthmatic responses via CD4(+)CD25(+) regulatory T cells and dendritic cells. Allergy Asthma Immunol Res 6(3):201–207. https://doi.org/10.4168/aair.2014.6.3.201
  60. King PT, Hutchinson PE, Johnson PD, Holmes PW, Freezer NJ, Holdsworth SR (2003) Adaptive immunity to nontypeable Haemophilus influenzae. Am J Respir Crit Care Med 167(4):587–592. https://doi.org/10.1164/rccm.200207-728OC CrossRefPubMedGoogle Scholar
  61. Kjaergard LL, Larsen FO, Norn S, Clementsen P, Skov PS, Permin H (1996) Basophil-bound IgE and serum IgE directed against Haemophilus influenzae and Streptococcus pneumoniae in patients with chronic bronchitis during acute exacerbations. APMIS 104(1):61–67CrossRefPubMedGoogle Scholar
  62. Koh YY, Park Y, Lee HJ, Kim CK (2001) Levels of interleukin-2, interferon-gamma, and interleukin-4 in bronchoalveolar lavage fluid from patients with Mycoplasma pneumonia: implication of tendency toward increased immunoglobulin E production. Pediatrics 107(3):E39CrossRefPubMedGoogle Scholar
  63. Korppi M (2009) Management of bacterial infections in children with asthma. Expert Rev Anti Infect Ther 7(7):869–877. https://doi.org/10.1586/eri.09.58 CrossRefPubMedGoogle Scholar
  64. Kowalski ML, Cieslak M, Perez-Novo CA, Makowska JS, Bachert C (2011) Clinical and immunological determinants of severe/refractory asthma (SRA): association with Staphylococcal superantigen-specific IgE antibodies. Allergy 66(1):32–38. https://doi.org/10.1111/j.1398-9995.2010.02379.x CrossRefPubMedGoogle Scholar
  65. Kwon HK, Lee CG, So JS, Chae CS, Hwang JS, Sahoo A et al (2010) Generation of regulatory dendritic cells and CD4+Foxp3+ T cells by probiotics administration suppresses immune disorders. Proc Natl Acad Sci USA 107(5):2159–2164. https://doi.org/10.1073/pnas.0904055107
  66. Larsen FO, Norn S, Mordhorst CH, Skov PS, Milman N, Clementsen P (1998) Chlamydia pneumoniae and possible relationship to asthma. Serum immunoglobulins and histamine release in patients and controls. APMIS 106(10):928–934CrossRefPubMedGoogle Scholar
  67. Larsen JM, Brix S, Thysen AH, Birch S, Rasmussen MA, Bisgaard H (2014) Children with asthma by school age display aberrant immune responses to pathogenic airway bacteria as infants. J Allergy Clin Immunol 133(4):1008–1013. https://doi.org/10.1016/j.jaci.2014.01.010 CrossRefPubMedGoogle Scholar
  68. Lee EY, Choi DY, Kim DK, Kim JW, Park JO, Kim S et al (2009) Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics 9(24):5425–5436. https://doi.org/10.1002/pmic.200900338
  69. Liu JN, Shin YS, Yoo HS, Nam YH, Jin HJ, Ye YM et al (2014) The prevalence of serum specific IgE to superantigens in asthma and allergic rhinitis patients. Allergy Asthma Immunol Res 6(3):263–266. https://doi.org/10.4168/aair.2014.6.3.263
  70. Lowy F (1998) Staphylococcus aureus infections. N Engl J Med 339:520–529CrossRefPubMedGoogle Scholar
  71. Martin RJ, Chu HW, Honour JM, Harbeck RJ (2001) Airway inflammation and bronchial hyperresponsiveness after Mycoplasma pneumoniae infection in a murine model. Am J Respir Cell Mol Biol 24(5):577–582. https://doi.org/10.1165/ajrcmb.24.5.4315 CrossRefPubMedGoogle Scholar
  72. Masoli M, Fabian D, Holt S, Beasley R, Program, G. I. F. A. G (2004) The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy 59(5):469–478. https://doi.org/10.1111/j.1398-9995.2004.00526.x CrossRefPubMedGoogle Scholar
  73. Medina JL, Coalson JJ, Brooks EG, Winter VT, Chaparro A, Principe MF et al (2012) Mycoplasma pneumoniae CARDS toxin induces pulmonary eosinophilic and lymphocytic inflammation. Am J Respir Cell Mol Biol 46(6):815–822. https://doi.org/10.1165/rcmb.2011-0135OC
  74. Moser C, Kjaergaard S, Pressler T, Kharazmi A, Koch C, Hoiby N (2000) The immune response to chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is predominantly of the Th2 type. APMIS 108(5):329–335CrossRefPubMedGoogle Scholar
  75. Nakamura Y, Oscherwitz J, Cease KB, Chan SM, Munoz-Planillo R, Hasegawa M et al (2013) Staphylococcus delta-toxin induces allergic skin disease by activating mast cells. Nature 503(7476):397–401. https://doi.org/10.1038/nature12655
  76. Olaya-Abril A, Jimenez-Munguia I, Gomez-Gascon L, Obando I, Rodriguez-Ortega MJ (2015) A pneumococcal protein array as a platform to discover serodiagnostic antigens against infection. Mol Cell Proteomics 14(10):2591–2608. https://doi.org/10.1074/mcp.M115.049544 CrossRefPubMedCentralPubMedGoogle Scholar
  77. Otto M (2014) Staphylococcus epidermidis pathogenesis. Methods Mol Biol 1106:17–31. https://doi.org/10.1007/978-1-62703-736-5_2 CrossRefPubMedGoogle Scholar
  78. Pastacaldi C, Lewis P, Howarth P (2011) Staphylococci and staphylococcal superantigens in asthma and rhinitis: a systematic review and meta-analysis. Allergy 66(4):549–555. https://doi.org/10.1111/j.1398-9995.2010.02502.x CrossRefPubMedGoogle Scholar
  79. Patel KK, Anderson E, Salva PS, Webley WC (2012) The prevalence and identity of Chlamydia-specific IgE in children with asthma and other chronic respiratory symptoms. Respir Res 13:32. https://doi.org/10.1186/1465-9921-13-32 CrossRefPubMedCentralPubMedGoogle Scholar
  80. Pauwels R, Verschraegen G, van der Straeten M (1980) IgE antibodies to bacteria in patients with bronchial asthma. Allergy 35(8):665–669CrossRefPubMedGoogle Scholar
  81. Peters J, Singh H, Brooks EG, Diaz J, Kannan TR, Coalson JJ et al (2011) Persistence of community-acquired respiratory distress syndrome toxin-producing Mycoplasma pneumoniae in refractory asthma. Chest 140(2):401–407. https://doi.org/10.1378/chest.11-0221
  82. Proft T, Fraser JD (2003) Bacterial superantigens. Clin Exp Immunol 133(3):299–306CrossRefPubMedCentralPubMedGoogle Scholar
  83. Ramsey CD, Celedon JC (2005) The hygiene hypothesis and asthma. Curr Opin Pulm Med 11(1):14–20CrossRefPubMedGoogle Scholar
  84. Read S, Malmström V, Powrie F (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 192(2):295–302CrossRefPubMedCentralPubMedGoogle Scholar
  85. Reginald K, Westritschnig K, Linhart B, Focke-Tejkl M, Jahn-Schmid B, Eckl-Dorna J et al (2011a) Staphylococcus aureus fibronectin-binding protein specifically binds IgE from patients with atopic dermatitis and requires antigen presentation for cellular immune responses. J Allergy Clin Immunol 128(1):82–91. e88. https://doi.org/10.1016/j.jaci.2011.02.034
  86. Reginald K, Westritschnig K, Werfel T, Heratizadeh A, Novak N, Focke-Tejkl M et al (2011b) Immunoglobulin E antibody reactivity to bacterial antigens in atopic dermatitis patients. Clin Exp Allergy 41(3):357–369. https://doi.org/10.1111/j.1365-2222.2010.03655.x
  87. Ribet D, Cossart P (2015) How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect 17(3):173–183. https://doi.org/10.1016/j.micinf.2015.01.004 CrossRefPubMedGoogle Scholar
  88. Ritchie AJ, Yam AO, Tanabe KM, Rice SA, Cooley MA (2003) Modification of in vivo and in vitro T- and B-cell-mediated immune responses by the Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone. Infect Immun 71(8):4421–4431CrossRefPubMedCentralPubMedGoogle Scholar
  89. Ritchie AJ, Whittall C, Lazenby JJ, Chhabra SR, Pritchard DI, Cooley MA (2007) The immunomodulatory Pseudomonas aeruginosa signalling molecule N-(3-oxododecanoyl)-L-homoserine lactone enters mammalian cells in an unregulated fashion. Immunol Cell Biol 85(8):596–602. https://doi.org/10.1038/sj.icb.7100090 CrossRefPubMedGoogle Scholar
  90. Schaub B, Lauener R, von Mutius E (2006) The many faces of the hygiene hypothesis. J Allergy Clin Immunol 117(5):969–977.; quiz 978. https://doi.org/10.1016/j.jaci.2006.03.003 CrossRefPubMedGoogle Scholar
  91. Seggev JS, Sedmak GV, Kurup VP (1996) Isotype-specific antibody responses to acute Mycoplasma pneumoniae infection. Ann Allergy Asthma Immunol 77(1):67–73. https://doi.org/10.1016/s1081-1206(10)63482-5 CrossRefPubMedGoogle Scholar
  92. Seroogy CM, Gern JE (2005) The role of T regulatory cells in asthma. J Allergy Clin Immunol 116(5):996–999. https://doi.org/10.1016/j.jaci.2005.07.015 CrossRefPubMedGoogle Scholar
  93. Shirakawa T, Enomoto T, Shimazu S, Hopkin JM (1997) The inverse association between tuberculin responses and atopic disorder. Science 275(5296):77–79CrossRefPubMedGoogle Scholar
  94. Smith RS, Harris SG, Phipps R, Iglewski B (2002) The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)homoserine lactone contributes to virulence and induces inflammation in vivo. J Bacteriol 184(4):1132–1139CrossRefPubMedCentralPubMedGoogle Scholar
  95. Smith-Norowitz TA, Chotikanatis K, Erstein DP, Perlman J, Norowitz YM, Joks R et al (2016) Chlamydia pneumoniae enhances the Th2 profile of stimulated peripheral blood mononuclear cells from asthmatic patients. Hum Immunol 77(5):382–388. https://doi.org/10.1016/j.humimm.2016.02.010
  96. Spaulding AR, Salgado-Pabon W, Kohler PL, Horswill AR, Leung DY, Schlievert PM (2013) Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev 26(3):422–447. https://doi.org/10.1128/CMR.00104-12 CrossRefPubMedCentralPubMedGoogle Scholar
  97. Stentzel S, Teufelberger A, Nordengrün M, Kolata J, Schmidt F, van Crombruggen K et al (2016) Staphylococcal serine protease-like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus. J Allergy Clin Immunol 139(2):492–500.e8. https://doi.org/10.1016/j.jaci.2016.03.045
  98. Tang LF, Shi YC, Xu YC, Wang CF, Yu ZS, Chen ZM (2009) The change of asthma-associated immunological parameters in children with Mycoplasma pneumoniae infection. J Asthma 46(3):265–269. https://doi.org/10.1080/02770900802647557 CrossRefPubMedGoogle Scholar
  99. Tee RD, Pepys J (1982) Specific serum IgE antibodies to bacterial antigens in allergic lung disease. Clin Allergy 12(5):439–450CrossRefPubMedGoogle Scholar
  100. Telford G, Wheeler D, Williams P, Tomkins PT, Appleby P, Sewell H et al (1998) The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-L-homoserine lactone has immunomodulatory activity. Infect Immun 66(1):36–42Google Scholar
  101. Thammavongsa V, Kim HK, Missiakas D, Schneewind O (2015) Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 13(9):529–543. https://doi.org/10.1038/nrmicro3521 CrossRefPubMedCentralPubMedGoogle Scholar
  102. Tiringer K, Treis A, Fucik P, Gona M, Gruber S, Renner S et al (2013) A Th17- and Th2-skewed cytokine profile in cystic fibrosis lungs represents a potential risk factor for Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 187(6):621–629. https://doi.org/10.1164/rccm.201206-1150OC
  103. Tripathi A, Conley DB, Grammer LC, Ditto AM, Lowery MM, Seiberling KA et al (2004) Immunoglobulin E to staphylococcal and streptococcal toxins in patients with chronic sinusitis/nasal polyposis. Laryngoscope 114(10):1822–1826. https://doi.org/10.1097/00005537-200410000-00027
  104. Umetsu DT, McIntire JJ, Akbari O, Macaubas C, DeKruyff RH (2002) Asthma: an epidemic of dysregulated immunity. Nat Immunol 3(8):715–720. https://doi.org/10.1038/ni0802-715 CrossRefPubMedGoogle Scholar
  105. Upritchard HG, Cordwell SJ, Lamont IL (2008) Immunoproteomics to examine cystic fibrosis host interactions with extracellular Pseudomonas aeruginosa proteins. Infect Immun 76(10):4624–4632CrossRefPubMedCentralPubMedGoogle Scholar
  106. Wang L, Chen Q, Shi C, Lv H, Xu X, Yu L (2015) Changes of serum TNF-alpha, IL-5 and IgE levels in the patients of mycoplasma pneumonia infection with or without bronchial asthma. Int J Clin Exp Med 8(3):3901–3906PubMedCentralPubMedGoogle Scholar
  107. Wark PA, Johnston SL, Simpson JL, Hensley MJ, Gibson PG (2002) Chlamydia pneumoniae immunoglobulin A reactivation and airway inflammation in acute asthma. Eur Respir J 20(4):834–840CrossRefPubMedGoogle Scholar
  108. Watanabe H, Uruma T, Nakamura H, Aoshiba K (2014) The role of Mycoplasma pneumoniae infection in the initial onset and exacerbations of asthma. Allergy Asthma Proc 35(3):204–210. https://doi.org/10.2500/aap.2014.35.3742
  109. Webley WC, Tilahun Y, Lay K, Patel K, Stuart ES, Andrzejewski C, Salva PS (2009) Occurrence of Chlamydia trachomatis and Chlamydia pneumoniae in paediatric respiratory infections. Eur Respir J 33(2):360–367. https://doi.org/10.1183/09031936.00019508 CrossRefPubMedGoogle Scholar
  110. Welliver RC, Duffy L (1993) The relationship of RSV-specific immunoglobulin E antibody responses in infancy, recurrent wheezing, and pulmonary function at age 7–8 years. Pediatr Pulmonol 15(1):19–27CrossRefPubMedGoogle Scholar
  111. Wertheim HFL, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, Nouwen JI (2005) The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5:751–762CrossRefPubMedGoogle Scholar
  112. Wills-Karp M, Rani R, Dienger K, Lewkowich I, Fox JG, Perkins C et al (2012) Trefoil factor 2 rapidly induces interleukin 33 to promote type 2 immunity during allergic asthma and hookworm infection. J Exp Med 209(3):607–622. https://doi.org/10.1084/jem.20110079
  113. Yano T, Ichikawa Y, Komatu S, Arai S, Oizumi K (1994) Association of Mycoplasma pneumoniae antigen with initial onset of bronchial asthma. Am J Respir Crit Care Med 149(5):1348–1353. https://doi.org/10.1164/ajrccm.149.5.8173777 CrossRefPubMedGoogle Scholar
  114. Ye Q, Xu XJ, Shao WX, Pan YX, Chen XJ (2014) Mycoplasma pneumoniae infection in children is a risk factor for developing allergic diseases. ScientificWorldJournal 2014:986527. https://doi.org/10.1155/2014/986527 PubMedCentralPubMedGoogle Scholar
  115. Yeh JJ, Wang YC, Hsu WH, Kao CH (2016) Incident asthma and Mycoplasma pneumoniae: a nationwide cohort study. J Allergy Clin Immunol 137(4):1017–1023.e1011–1016. https://doi.org/10.1016/j.jaci.2015.09.032 CrossRefPubMedGoogle Scholar
  116. Yoshida M, Leigh R, Matsumoto K, Wattie J, Ellis R, O'Byrne PM, Inman MD (2002) Effect of interferon-gamma on allergic airway responses in interferon-gamma-deficient mice. Am J Respir Crit Care Med 166(4):451–456. https://doi.org/10.1164/rccm.200202-095OC CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of ImmunologyUniversity Medicine GreifswaldGreifswaldGermany

Personalised recommendations