Specific Therapies for Asthma Endotypes: A New Twist in Drug Development

  • Ulrich M. ZisslerEmail author
Part of the Birkhäuser Advances in Infectious Diseases book series (BAID)


Asthma is a heterogeneous disease mainly affecting the lower airways and hallmarked by a chronic lung tissue inflammation that is strongly influenced by environmental and immunological factors. In a subgroup of asthmatics, respiratory infections are associated with the development of chronic disease and more frequent inflammatory exacerbations. Nevertheless, patients suffering from different asthma subgroups are treated with mainly non-specific and symptom-related using anti-inflammatory drugs and bronchodilators. Therefore, it is of great importance to define molecular patterns of asthma and allergy as basis for endotype definitions, rather than using clinical disease phenotypes. In addition, a number of factors can contribute to poor responses, while underlying patho-biological differences are increasingly recognized to play a role. These factors include novel biomarkers as well as well-known pathways but also consideration of the influence of the airway microbiome. With respect to this, specific drugs are developed targeting cellular components (e.g. eosinophils, neutrophils, Th9 cells) or specific mediators (e.g. IgE, FceR, IL5, TSLP) but also key regulators such as GATA3. In addition, also viral-induced asthma is attracting notice and development of anti-viral therapy strategies are promoted.


Asthma Endotypes Lung inflammation Biomarkers 



Asthma control questionnaire


Bronchial hyperresponsiveness


CC-chemokine ligand


Cluster of differentiation


Calcium-activated chloride channel protein 1


High-affinity IgE receptor I


US Food and Drug Administration


Fraction of exhaled nitric oxide


Volume of air expelled in the first second of a forced expiration


Humanized monoclonal antibody


Inhaled corticosteroids






Inducible nitric oxide synthase


Long acting beta2 agonist




Monoclonal antibody


Oral corticosteroid




Respiratory syncytial virus


T helper


Thymic stromal lymphopoietin


  1. Aho VT, Pereira PA, Haahtela T, Pawankar R, Auvinen P, Koskinen K (2015) The microbiome of the human lower airways: a next generation sequencing perspective. World Allergy Organ J 8(1):23. PubMedCrossRefGoogle Scholar
  2. Allakhverdi Z, Comeau MR, Jessup HK, Yoon BR, Brewer A, Chartier S, Paquette N, Ziegler SF, Sarfati M, Delespesse G (2007) Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J Exp Med 204(2):253–258. PubMedPubMedCentralCrossRefGoogle Scholar
  3. Amelink M, de Groot JC, de Nijs SB, Lutter R, Zwinderman AH, Sterk PJ, ten Brinke A, Bel EH (2013) Severe adult-onset asthma: a distinct phenotype. J Allergy Clin Immunol 132(2):336–341. PubMedCrossRefGoogle Scholar
  4. Anderson GP (2008) Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 372(9643):1107–1119. PubMedCrossRefGoogle Scholar
  5. Antoniu SA (2010) MEDI-528, an anti-IL-9 humanized antibody for the treatment of asthma. Curr Opin Mol Ther 12(2):233–239PubMedGoogle Scholar
  6. Aron JL, Akbari O (2017) Regulatory T cells and type 2 innate lymphoid cell dependent asthma. Allergy 72(8):1148–1155. PubMedCrossRefGoogle Scholar
  7. Bel EH, Wenzel SE, Thompson PJ, Prazma CM, Keene ON, Yancey SW, Ortega HG, Pavord ID, Investigators S (2014) Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. N Engl J Med 371(13):1189–1197. PubMedCrossRefGoogle Scholar
  8. Berry MA, Hargadon B, Shelley M, Parker D, Shaw DE, Green RH, Bradding P, Brightling CE, Wardlaw AJ, Pavord ID (2006) Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med 354(7):697–708. PubMedCrossRefGoogle Scholar
  9. Billington CK, Penn RB, Hall IP (2016) beta2 agonists. Handb Exp Pharmacol 237:23–40. CrossRefGoogle Scholar
  10. De Boever EH, Ashman C, Cahn AP, Locantore NW, Overend P, Pouliquen IJ, Serone AP, Wright TJ, Jenkins MM, Panesar IS, Thiagarajah SS, Wenzel SE (2014) Efficacy and safety of an anti-IL-13 mAb in patients with severe asthma: a randomized trial. J Allergy Clin Immunol 133(4):989–996. doi:
  11. Borish LC, Nelson HS, Lanz MJ, Claussen L, Whitmore JB, Agosti JM, Garrison L (1999) Interleukin-4 receptor in moderate atopic asthma. A phase I/II randomized, placebo-controlled trial. Am J Respir Crit Care Med 160(6):1816–1823. PubMedCrossRefGoogle Scholar
  12. Borish LC, Nelson HS, Corren J, Bensch G, Busse WW, Whitmore JB, Agosti JM, IL-4R Asthma Study Group (2001) Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. J Allergy Clin Immunol 107(6):963–970. PubMedCrossRefGoogle Scholar
  13. Boulet LP, Chapman KR, Cote J, Kalra S, Bhagat R, Swystun VA, Laviolette M, Cleland LD, Deschesnes F, Su JQ, DeVault A, Fick RB Jr, Cockcroft DW (1997) Inhibitory effects of an anti-IgE antibody E25 on allergen-induced early asthmatic response. Am J Respir Crit Care Med 155(6):1835–1840. PubMedCrossRefGoogle Scholar
  14. Braman SS (2006) The global burden of asthma. Chest 130(1 Suppl):4S–12S. PubMedCrossRefGoogle Scholar
  15. Brown HM (1958) Treatment of chronic asthma with prednisolone; significance of eosinophils in the sputum. Lancet 2(7059):1245–1247PubMedCrossRefGoogle Scholar
  16. Brusselle G, Kips J, Joos G, Bluethmann H, Pauwels R (1995) Allergen-induced airway inflammation and bronchial responsiveness in wild-type and interleukin-4-deficient mice. Am J Respir Cell Mol Biol 12(3):254–259. PubMedCrossRefGoogle Scholar
  17. Busse W, Corren J, Lanier BQ, McAlary M, Fowler-Taylor A, Cioppa GD, van As A, Gupta N (2001) Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J Allergy Clin Immunol 108(2):184–190. PubMedCrossRefGoogle Scholar
  18. Busse WW, Israel E, Nelson HS, Baker JW, Charous BL, Young DY, Vexler V, Shames RS, Daclizumab Asthma Study Group (2008) Daclizumab improves asthma control in patients with moderate to severe persistent asthma: a randomized, controlled trial. Am J Respir Crit Care Med 178(10):1002–1008. PubMedCrossRefGoogle Scholar
  19. Busse WW, Morgan WJ, Gergen PJ, Mitchell HE, Gern JE, Liu AH, Gruchalla RS, Kattan M, Teach SJ, Pongracic JA, Chmiel JF, Steinbach SF, Calatroni A, Togias A, Thompson KM, Szefler SJ, Sorkness CA (2011) Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N Engl J Med 364(11):1005–1015. PubMedPubMedCentralCrossRefGoogle Scholar
  20. Busse WW, Holgate S, Kerwin E, Chon Y, Feng J, Lin J, Lin SL (2013) Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med 188(11):1294–1302. PubMedCrossRefGoogle Scholar
  21. Castro M, Mathur S, Hargreave F, Boulet LP, Xie F, Young J, Wilkins HJ, Henkel T, Nair P, Res-5-0010 Study Group (2011) Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am J Respir Crit Care Med 184(10):1125–1132. PubMedCrossRefGoogle Scholar
  22. Castro M, Wenzel SE, Bleecker ER, Pizzichini E, Kuna P, Busse WW, Gossage DL, Ward CK, Wu Y, Wang B, Khatry DB, van der Merwe R, Kolbeck R, Molfino NA, Raible DG (2014) Benralizumab, an anti-interleukin 5 receptor alpha monoclonal antibody, versus placebo for uncontrolled eosinophilic asthma: a phase 2b randomised dose-ranging study. Lancet Respir Med 2(11):879–890. PubMedCrossRefGoogle Scholar
  23. Chibana K, Trudeau JB, Mustovich AT, Hu H, Zhao J, Balzar S, Chu HW, Wenzel SE (2008) IL-13 induced increases in nitrite levels are primarily driven by increases in inducible nitric oxide synthase as compared with effects on arginases in human primary bronchial epithelial cells. Clin Exp Allergy 38(6):936–946. PubMedCrossRefGoogle Scholar
  24. Clutterbuck EJ, Hirst EM, Sanderson CJ (1989) Human interleukin-5 (IL-5) regulates the production of eosinophils in human bone marrow cultures: comparison and interaction with IL-1, IL-3, IL-6, and GMCSF. Blood 73(6):1504–1512PubMedGoogle Scholar
  25. Corren J, Busse W, Meltzer EO, Mansfield L, Bensch G, Fahrenholz J, Wenzel SE, Chon Y, Dunn M, Weng HH, Lin SL (2010) A randomized, controlled, phase 2 study of AMG 317, an IL-4Ralpha antagonist, in patients with asthma. Am J Respir Crit Care Med 181(8):788–796. PubMedCrossRefGoogle Scholar
  26. Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV, Arron JR, Harris JM, Scheerens H, Wu LC, Su Z, Mosesova S, Eisner MD, Bohen SP, Matthews JG (2011a) Lebrikizumab treatment in adults with asthma. N Engl J Med 365(12):1088–1098. PubMedCrossRefGoogle Scholar
  27. Corren J, Wood RA, Patel D, Zhu J, Yegin A, Dhillon G, Fish JE (2011b) Effects of omalizumab on changes in pulmonary function induced by controlled cat room challenge. J Allergy Clin Immunol 127(2):398–405. PubMedCrossRefGoogle Scholar
  28. Depner M, Ege MJ, Cox MJ, Dwyer S, Walker AW, Birzele LT, Genuneit J, Horak E, Braun-Fahrlander C, Danielewicz H, Maier RM, Moffatt MF, Cookson WO, Heederik D, von Mutius E, Legatzki A (2017) Bacterial microbiota of the upper respiratory tract and childhood asthma. J Allergy Clin Immunol 139(3):826–834. e813. PubMedCrossRefGoogle Scholar
  29. Dixon AE, Pratley RE, Forgione PM, Kaminsky DA, Whittaker-Leclair LA, Griffes LA, Garudathri J, Raymond D, Poynter ME, Bunn JY, Irvin CG (2011) Effects of obesity and bariatric surgery on airway hyperresponsiveness, asthma control, and inflammation. J Allergy Clin Immunol 128(3):508–515.e501–502. doi:
  30. Dweik RA, Sorkness RL, Wenzel S, Hammel J, Curran-Everett D, Comhair SA, Bleecker E, Busse W, Calhoun WJ, Castro M, Chung KF, Israel E, Jarjour N, Moore W, Peters S, Teague G, Gaston B, Erzurum SC, National Heart, Lung, and Blood Institute Severe Asthma Research Program (2010) Use of exhaled nitric oxide measurement to identify a reactive, at-risk phenotype among patients with asthma. Am J Respir Crit Care Med 181(10):1033–1041. PubMedPubMedCentralCrossRefGoogle Scholar
  31. Erin EM, Leaker BR, Nicholson GC, Tan AJ, Green LM, Neighbour H, Zacharasiewicz AS, Turner J, Barnathan ES, Kon OM, Barnes PJ, Hansel TT (2006) The effects of a monoclonal antibody directed against tumor necrosis factor-alpha in asthma. Am J Respir Crit Care Med 174(7):753–762. PubMedCrossRefGoogle Scholar
  32. Fahy JV, Fleming HE, Wong HH, Liu JT, Su JQ, Reimann J, Fick RB Jr, Boushey HA (1997) The effect of an anti-IgE monoclonal antibody on the early- and late-phase responses to allergen inhalation in asthmatic subjects. Am J Respir Crit Care Med 155(6):1828–1834. PubMedCrossRefGoogle Scholar
  33. FitzGerald JM, Bleecker ER, Nair P, Korn S, Ohta K, Lommatzsch M, Ferguson GT, Busse WW, Barker P, Sproule S, Gilmartin G, Werkstrom V, Aurivillius M, Goldman M, CALIMA Study Investigators (2016) Benralizumab, an anti-interleukin-5 receptor alpha monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 388(10056):2128–2141. PubMedCrossRefGoogle Scholar
  34. Fitzpatrick AM, Teague WG, Meyers DA, Peters SP, Li X, Li H, Wenzel SE, Aujla S, Castro M, Bacharier LB, Gaston BM, Bleecker ER, Moore WC, National Institutes of Health/National Heart, Lung, and Blood Institute Severe Asthma Research Program (2011) Heterogeneity of severe asthma in childhood: confirmation by cluster analysis of children in the National Institutes of Health/National Heart, Lung, and Blood Institute Severe Asthma Research Program. J Allergy Clin Immunol 127(2):382–389.e381–313. doi:
  35. Flood-Page PT, Menzies-Gow AN, Kay AB, Robinson DS (2003) Eosinophil’s role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am J Respir Crit Care Med 167(2):199–204. PubMedCrossRefGoogle Scholar
  36. Flood-Page P, Swenson C, Faiferman I, Matthews J, Williams M, Brannick L, Robinson D, Wenzel S, Busse W, Hansel TT, Barnes NC, International Mepolizumab Study Group (2007) A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am J Respir Crit Care Med 176(11):1062–1071. PubMedCrossRefGoogle Scholar
  37. Galli SJ, Tsai M (2012) IgE and mast cells in allergic disease. Nat Med 18(5):693–704. PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gauvreau GM, Boulet LP, Cockcroft DW, Fitzgerald JM, Carlsten C, Davis BE, Deschesnes F, Duong M, Durn BL, Howie KJ, Hui L, Kasaian MT, Killian KJ, Strinich TX, Watson RM, Nathalie Y, Zhou S, Raible D, O’Byrne PM (2011) Effects of interleukin-13 blockade on allergen-induced airway responses in mild atopic asthma. Am J Respir Crit Care Med 183(8):1007–1014. PubMedCrossRefGoogle Scholar
  39. Gauvreau GM, Boulet LP, Cockcroft DW, FitzGerald JM, Mayers I, Carlsten C, Laviolette M, Killian KJ, Davis BE, Larche M, Kipling C, Dua B, Mosesova S, Putnam W, Zheng Y, Scheerens H, McClintock D, Matthews JG, O’Byrne PM (2014a) OX40L blockade and allergen-induced airway responses in subjects with mild asthma. Clin Exp Allergy 44(1):29–37. PubMedCrossRefGoogle Scholar
  40. Gauvreau GM, O’Byrne PM, Boulet LP, Wang Y, Cockcroft D, Bigler J, FitzGerald JM, Boedigheimer M, Davis BE, Dias C, Gorski KS, Smith L, Bautista E, Comeau MR, Leigh R, Parnes JR (2014b) Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med 370(22):2102–2110. PubMedCrossRefGoogle Scholar
  41. Gauvreau GM, Arm JP, Boulet LP, Leigh R, Cockcroft DW, Davis BE, Mayers I, FitzGerald JM, Dahlen B, Killian KJ, Laviolette M, Carlsten C, Lazarinis N, Watson RM, Milot J, Swystun V, Bowen M, Hui L, Lantz AS, Meiser K, Maahs S, Lowe PJ, Skerjanec A, Drollmann A, O’Byrne PM (2016) Efficacy and safety of multiple doses of QGE031 (ligelizumab) versus omalizumab and placebo in inhibiting allergen-induced early asthmatic responses. J Allergy Clin Immunol 138(4):1051–1059. PubMedCrossRefGoogle Scholar
  42. Grunig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM, Sheppard D, Mohrs M, Donaldson DD, Locksley RM, Corry DB (1998) Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282(5397):2261–2263PubMedPubMedCentralCrossRefGoogle Scholar
  43. Haldar P, Pavord ID, Shaw DE, Berry MA, Thomas M, Brightling CE, Wardlaw AJ, Green RH (2008) Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med 178(3):218–224. PubMedPubMedCentralCrossRefGoogle Scholar
  44. Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, Marshall RP, Bradding P, Green RH, Wardlaw AJ, Pavord ID (2009) Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med 360(10):973–984. PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hanania NA, Alpan O, Hamilos DL, Condemi JJ, Reyes-Rivera I, Zhu J, Rosen KE, Eisner MD, Wong DA, Busse W (2011) Omalizumab in severe allergic asthma inadequately controlled with standard therapy: a randomized trial. Ann Intern Med 154(9):573–582. PubMedCrossRefGoogle Scholar
  46. Hanania NA, Wenzel S, Rosen K, Hsieh HJ, Mosesova S, Choy DF, Lal P, Arron JR, Harris JM, Busse W (2013) Exploring the effects of omalizumab in allergic asthma: an analysis of biomarkers in the EXTRA study. Am J Respir Crit Care Med 187(8):804–811. PubMedCrossRefGoogle Scholar
  47. Hanania NA, Korenblat P, Chapman KR, Bateman ED, Kopecky P, Paggiaro P, Yokoyama A, Olsson J, Gray S, Holweg CT, Eisner M, Asare C, Fischer SK, Peng K, Putnam WS, Matthews JG (2016) Efficacy and safety of lebrikizumab in patients with uncontrolled asthma (LAVOLTA I and LAVOLTA II): replicate, phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respir Med 4(10):781–796. PubMedCrossRefGoogle Scholar
  48. Harris JM, Maciuca R, Bradley MS, Cabanski CR, Scheerens H, Lim J, Cai F, Kishnani M, Liao XC, Samineni D, Zhu R, Cochran C, Soong W, Diaz JD, Perin P, Tsukayama M, Dimov D, Agache I, Kelsen SG (2016) A randomized trial of the efficacy and safety of quilizumab in adults with inadequately controlled allergic asthma. Respir Res 17:29. PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hastie AT, Moore WC, Meyers DA, Vestal PL, Li H, Peters SP, Bleecker ER, National Heart, Lung, Blood Institute Severe Asthma Research Program (2010) Analyses of asthma severity phenotypes and inflammatory proteins in subjects stratified by sputum granulocytes. J Allergy Clin Immunol 125(5):1028–1036. e1013. PubMedPubMedCentralCrossRefGoogle Scholar
  50. Holgate ST, Chuchalin AG, Hebert J, Lotvall J, Persson GB, Chung KF, Bousquet J, Kerstjens HA, Fox H, Thirlwell J, Cioppa GD, Omalizumab 011 International Study Group (2004) Efficacy and safety of a recombinant anti-immunoglobulin E antibody (omalizumab) in severe allergic asthma. Clin Exp Allergy 34(4):632–638. PubMedCrossRefGoogle Scholar
  51. Homburg U, Renz H, Timmer W, Hohlfeld JM, Seitz F, Luer K, Mayer A, Wacker A, Schmidt O, Kuhlmann J, Turowska A, Roller J, Kutz K, Schluter G, Krug N, Garn H (2015) Safety and tolerability of a novel inhaled GATA3 mRNA targeting DNAzyme in patients with TH2-driven asthma. J Allergy Clin Immunol 136(3):797–800. PubMedCrossRefGoogle Scholar
  52. Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336(6086):1268–1273. PubMedPubMedCentralCrossRefGoogle Scholar
  53. Howarth PH, Babu KS, Arshad HS, Lau L, Buckley M, McConnell W, Beckett P, Al Ali M, Chauhan A, Wilson SJ, Reynolds A, Davies DE, Holgate ST (2005) Tumour necrosis factor (TNFalpha) as a novel therapeutic target in symptomatic corticosteroid dependent asthma. Thorax 60(12):1012–1018. PubMedPubMedCentralCrossRefGoogle Scholar
  54. Humbert M, Beasley R, Ayres J, Slavin R, Hebert J, Bousquet J, Beeh KM, Ramos S, Canonica GW, Hedgecock S, Fox H, Blogg M, Surrey K (2005) Benefits of omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE. Allergy 60(3):309–316. PubMedCrossRefGoogle Scholar
  55. Iida S, Misaka H, Inoue M, Shibata M, Nakano R, Yamane-Ohnuki N, Wakitani M, Yano K, Shitara K, Satoh M (2006) Nonfucosylated therapeutic IgG1 antibody can evade the inhibitory effect of serum immunoglobulin G on antibody-dependent cellular cytotoxicity through its high binding to FcgammaRIIIa. Clin Cancer Res 12(9):2879–2887. PubMedCrossRefGoogle Scholar
  56. Jatakanon A, Uasuf C, Maziak W, Lim S, Chung KF, Barnes PJ (1999) Neutrophilic inflammation in severe persistent asthma. Am J Respir Crit Care Med 160(5 Pt 1):1532–1539. PubMedCrossRefGoogle Scholar
  57. Jia G, Erickson RW, Choy DF, Mosesova S, Wu LC, Solberg OD, Shikotra A, Carter R, Audusseau S, Hamid Q, Bradding P, Fahy JV, Woodruff PG, Harris JM, Arron JR, Bronchoscopic Exploratory Research Study of Biomarkers in Corticosteroid-refractory Asthma Study Group (2012) Periostin is a systemic biomarker of eosinophilic airway inflammation in asthmatic patients. J Allergy Clin Immunol 130 (3):647-654.e610. doi:
  58. Kips JC, Tavernier J, Pauwels RA (1992) Tumor necrosis factor causes bronchial hyperresponsiveness in rats. Am Rev Respir Dis 145(2 Pt 1):332–336. PubMedCrossRefGoogle Scholar
  59. Kolbeck R, Kozhich A, Koike M, Peng L, Andersson CK, Damschroder MM, Reed JL, Woods R, Dall’acqua WW, Stephens GL, Erjefalt JS, Bjermer L, Humbles AA, Gossage D, Wu H, Kiener PA, Spitalny GL, Mackay CR, Molfino NA, Coyle AJ (2010) MEDI-563, a humanized anti-IL-5 receptor alpha mAb with enhanced antibody-dependent cell-mediated cytotoxicity function. J Allergy Clin Immunol 125(6):1344–1353. e1342. PubMedCrossRefGoogle Scholar
  60. Kolwijck E, van de Veerdonk FL (2014) The potential impact of the pulmonary microbiome on immunopathogenesis of Aspergillus-related lung disease. Eur J Immunol 44(11):3156–3165. PubMedCrossRefGoogle Scholar
  61. Krug N, Hohlfeld JM, Kirsten AM, Kornmann O, Beeh KM, Kappeler D, Korn S, Ignatenko S, Timmer W, Rogon C, Zeitvogel J, Zhang N, Bille J, Homburg U, Turowska A, Bachert C, Werfel T, Buhl R, Renz J, Garn H, Renz H (2015) Allergen-induced asthmatic responses modified by a GATA3-specific DNAzyme. N Engl J Med 372(21):1987–1995. PubMedCrossRefGoogle Scholar
  62. Lanier B, Bridges T, Kulus M, Taylor AF, Berhane I, Vidaurre CF (2009) Omalizumab for the treatment of exacerbations in children with inadequately controlled allergic (IgE-mediated) asthma. J Allergy Clin Immunol 124(6):1210–1216. PubMedCrossRefGoogle Scholar
  63. Laviolette M, Gossage DL, Gauvreau G, Leigh R, Olivenstein R, Katial R, Busse WW, Wenzel S, Wu Y, Datta V, Kolbeck R, Molfino NA (2013) Effects of benralizumab on airway eosinophils in asthmatic patients with sputum eosinophilia. J Allergy Clin Immunol 132 (5):1086-1096.e1085. doi:
  64. Leckie MJ, ten Brinke A, Khan J, Diamant Z, O’Connor BJ, Walls CM, Mathur AK, Cowley HC, Chung KF, Djukanovic R, Hansel TT, Holgate ST, Sterk PJ, Barnes PJ (2000) Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356(9248):2144–2148PubMedCrossRefGoogle Scholar
  65. Leung E, Al Efraij K, FitzGerald JM (2017) The safety of mepolizumab for the treatment of asthma. Expert Opin Drug Saf:1–8.
  66. Lin TH, Cheng CC, Su HH, Huang NC, Chen JJ, Kang HY, Chang TH (2016) Lipopolysaccharide attenuates induction of proallergic cytokines, thymic stromal lymphopoietin, and interleukin 33 in respiratory epithelial cells stimulated with PolyI:C and human parechovirus. Front Immunol 7:440. PubMedPubMedCentralGoogle Scholar
  67. Lotvall J, Akdis CA, Bacharier LB, Bjermer L, Casale TB, Custovic A, Lemanske RF Jr, Wardlaw AJ, Wenzel SE, Greenberger PA (2011) Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol 127(2):355–360. PubMedCrossRefGoogle Scholar
  68. Mansbach JM, Hasegawa K, Henke DM, Ajami NJ, Petrosino JF, Shaw CA, Piedra PA, Sullivan AF, Espinola JA, Camargo CA, Jr (2016) Respiratory syncytial virus and rhinovirus severe bronchiolitis are associated with distinct nasopharyngeal microbiota. J Allergy Clin Immunol 137 (6):1909-1913.e1904. doi:
  69. Marsland BJ (2013) Influences of the microbiome on the early origins of allergic asthma. Ann Am Thorac Soc 10(Suppl):S165–S169. PubMedCrossRefGoogle Scholar
  70. Marsland BJ, Gollwitzer ES (2014) Host-microorganism interactions in lung diseases. Nat Rev Immunol 14(12):827–835. PubMedCrossRefGoogle Scholar
  71. Martinez-Gonzalez I, Steer CA, Takei F (2015) Lung ILC2s link innate and adaptive responses in allergic inflammation. Trends Immunol 36(3):189–195. PubMedCrossRefGoogle Scholar
  72. Massoud AH, Charbonnier LM, Lopez D, Pellegrini M, Phipatanakul W, Chatila TA (2016) An asthma-associated IL4R variant exacerbates airway inflammation by promoting conversion of regulatory T cells to TH17-like cells. Nat Med 22(9):1013–1022. PubMedPubMedCentralCrossRefGoogle Scholar
  73. McGrath KW, Icitovic N, Boushey HA, Lazarus SC, Sutherland ER, Chinchilli VM, Fahy JV, Asthma Clinical Research Network of the National Heart, Lung, Blood Institute (2012) A large subgroup of mild-to-moderate asthma is persistently noneosinophilic. Am J Respir Crit Care Med 185(6):612–619. PubMedPubMedCentralCrossRefGoogle Scholar
  74. Milgrom H, Fick RB Jr, Su JQ, Reimann JD, Bush RK, Watrous ML, Metzger WJ (1999) Treatment of allergic asthma with monoclonal anti-IgE antibody. rhuMAb-E25 Study Group. N Engl J Med 341(26):1966–1973. PubMedCrossRefGoogle Scholar
  75. Milgrom H, Berger W, Nayak A, Gupta N, Pollard S, McAlary M, Taylor AF, Rohane P (2001) Treatment of childhood asthma with anti-immunoglobulin E antibody (omalizumab). Pediatrics 108(2):E36PubMedCrossRefGoogle Scholar
  76. Miranda C, Busacker A, Balzar S, Trudeau J, Wenzel SE (2004) Distinguishing severe asthma phenotypes: role of age at onset and eosinophilic inflammation. J Allergy Clin Immunol 113(1):101–108. PubMedCrossRefGoogle Scholar
  77. Mochizuki H, Kusuda S, Okada K, Yoshihara S, Furuya H, Simoes EA (2017) Palivizumab prophylaxis in preterm infants and subsequent recurrent wheezing: 6 year follow up study. Am J Respir Crit Care Med 196(1):–29, 38.
  78. Modena BD, Tedrow JR, Milosevic J, Bleecker ER, Meyers DA, Wu W, Bar-Joseph Z, Erzurum SC, Gaston BM, Busse WW, Jarjour NN, Kaminski N, Wenzel SE (2014) Gene expression in relation to exhaled nitric oxide identifies novel asthma phenotypes with unique biomolecular pathways. Am J Respir Crit Care Med 190(12):1363–1372. PubMedPubMedCentralCrossRefGoogle Scholar
  79. Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, D’Agostino R Jr, Castro M, Curran-Everett D, Fitzpatrick AM, Gaston B, Jarjour NN, Sorkness R, Calhoun WJ, Chung KF, Comhair SA, Dweik RA, Israel E, Peters SP, Busse WW, Erzurum SC, Bleecker ER, National Heart, Lung, Blood Institute’s Severe Asthma Research Program (2010) Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med 181(4):315–323. PubMedCrossRefGoogle Scholar
  80. Moore WC, Hastie AT, Li X, Li H, Busse WW, Jarjour NN, Wenzel SE, Peters SP, Meyers DA, Bleecker ER, National Heart, Lung, and Blood Institute’s Severe Asthma Research Program (2014) Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis. J Allergy Clin Immunol 133(6):1557–1563.e1555. PubMedCrossRefGoogle Scholar
  81. Morjaria JB, Chauhan AJ, Babu KS, Polosa R, Davies DE, Holgate ST (2008) The role of a soluble TNFalpha receptor fusion protein (etanercept) in corticosteroid refractory asthma: a double blind, randomised, placebo controlled trial. Thorax 63(7):584–591. PubMedCrossRefGoogle Scholar
  82. Nair P, Pizzichini MM, Kjarsgaard M, Inman MD, Efthimiadis A, Pizzichini E, Hargreave FE, O’Byrne PM (2009) Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med 360(10):985–993. PubMedCrossRefGoogle Scholar
  83. Nair P, Gaga M, Zervas E, Alagha K, Hargreave FE, O’Byrne PM, Stryszak P, Gann L, Sadeh J, Chanez P, Study Investigators (2012) Safety and efficacy of a CXCR2 antagonist in patients with severe asthma and sputum neutrophils: a randomized, placebo-controlled clinical trial. Clin Exp Allergy 42(7):1097–1103. PubMedCrossRefGoogle Scholar
  84. National Asthma Education and Prevention Program (2007) Expert panel report 3 (EPR-3): guidelines for the diagnosis and management of asthma-summary report 2007. J Allergy Clin Immunol 120(5 Suppl):S94–138. Google Scholar
  85. Ober C, Yao TC (2011) The genetics of asthma and allergic disease: a 21st century perspective. Immunol Rev 242(1):10–30. PubMedPubMedCentralCrossRefGoogle Scholar
  86. Oh CK, Leigh R, McLaurin KK, Kim K, Hultquist M, Molfino NA (2013) A randomized, controlled trial to evaluate the effect of an anti-interleukin-9 monoclonal antibody in adults with uncontrolled asthma. Respir Res 14:93. PubMedPubMedCentralCrossRefGoogle Scholar
  87. Ortega HG, Yancey SW, Mayer B, Gunsoy NB, Keene ON, Bleecker ER, Brightling CE, Pavord ID (2016) Severe eosinophilic asthma treated with mepolizumab stratified by baseline eosinophil thresholds: a secondary analysis of the DREAM and MENSA studies. Lancet Respir Med 4(7):549–556. PubMedCrossRefGoogle Scholar
  88. Parker JM, Oh CK, LaForce C, Miller SD, Pearlman DS, Le C, Robbie GJ, White WI, White B, Molfino NA, MEDI-528 Clinical Trials Group (2011) Safety profile and clinical activity of multiple subcutaneous doses of MEDI-528, a humanized anti-interleukin-9 monoclonal antibody, in two randomized phase 2a studies in subjects with asthma. BMC Pulm Med 11:14. PubMedPubMedCentralCrossRefGoogle Scholar
  89. Pavord ID, Brightling CE, Woltmann G, Wardlaw AJ (1999) Non-eosinophilic corticosteroid unresponsive asthma. Lancet 353(9171):2213–2214. PubMedCrossRefGoogle Scholar
  90. Pavord ID, Korn S, Howarth P, Bleecker ER, Buhl R, Keene ON, Ortega H, Chanez P (2012) Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet 380(9842):651–659. PubMedCrossRefGoogle Scholar
  91. Piper E, Brightling C, Niven R, Oh C, Faggioni R, Poon K, She D, Kell C, May RD, Geba GP, Molfino NA (2013) A phase II placebo-controlled study of tralokinumab in moderate-to-severe asthma. Eur Respir J 41(2):330–338. PubMedCrossRefGoogle Scholar
  92. Prazma CM, Wenzel S, Barnes N, Douglass JA, Hartley BF, Ortega H (2014) Characterisation of an OCS-dependent severe asthma population treated with mepolizumab. Thorax 69(12):1141–1142. PubMedCrossRefGoogle Scholar
  93. Queen C, Schneider WP, Selick HE, Payne PW, Landolfi NF, Duncan JF, Avdalovic NM, Levitt M, Junghans RP, Waldmann TA (1989) A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci USA 86(24):10029–10033PubMedPubMedCentralCrossRefGoogle Scholar
  94. Rickel EA, Siegel LA, Yoon BR, Rottman JB, Kugler DG, Swart DA, Anders PM, Tocker JE, Comeau MR, Budelsky AL (2008) Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities. J Immunol 181(6):4299–4310PubMedCrossRefGoogle Scholar
  95. Robinson DS, Hamid Q, Ying S, Tsicopoulos A, Barkans J, Bentley AM, Corrigan C, Durham SR, Kay AB (1992) Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med 326(5):298–304. PubMedCrossRefGoogle Scholar
  96. Schmidt-Weber CB, Akdis M, Akdis CA (2007) TH17 cells in the big picture of immunology. J Allergy Clin Immunol 120(2):247–254. PubMedCrossRefGoogle Scholar
  97. Schmitt E, Germann T, Goedert S, Hoehn P, Huels C, Koelsch S, Kühn R, Müller W, Palm N, Rüde E (1994) IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-beta and IL-4, and is inhibited by IFN-gamma. J Immunol 153(9):3989–3996PubMedGoogle Scholar
  98. Segal LN, Blaser MJ (2014) A brave new world: the lung microbiota in an era of change. Ann Am Thorac Soc 11(Suppl 1):S21–S27. PubMedPubMedCentralCrossRefGoogle Scholar
  99. Sel S, Wegmann M, Dicke T, Sel S, Henke W, Yildirim AO, Renz H, Garn H (2008) Effective prevention and therapy of experimental allergic asthma using a GATA-3-specific DNAzyme. J Allergy Clin Immunol 121(4):910–916.e915. PubMedCrossRefGoogle Scholar
  100. Sheehan WJ, Mauger DT, Paul IM, Moy JN, Boehmer SJ, Szefler SJ, Fitzpatrick AM, Jackson DJ, Bacharier LB, Cabana MD, Covar R, Holguin F, Lemanske RF Jr, Martinez FD, Pongracic JA, Beigelman A, Baxi SN, Benson M, Blake K, Chmiel JF, Daines CL, Daines MO, Gaffin JM, Gentile DA, Gower WA, Israel E, Kumar HV, Lang JE, Lazarus SC, Lima JJ, Ly N, Marbin J, Morgan WJ, Myers RE, Olin JT, Peters SP, Raissy HH, Robison RG, Ross K, Sorkness CA, Thyne SM, Wechsler ME, Phipatanakul W, AsthmaNet NN (2016) Acetaminophen versus Ibuprofen in Young Children with Mild Persistent Asthma. N Engl J Med 375(7):619–630. PubMedPubMedCentralCrossRefGoogle Scholar
  101. Shook BC, Lin K (2017) Recent advances in developing antiviral therapies for respiratory syncytial virus. Top Curr Chem 375(2):40. CrossRefGoogle Scholar
  102. Slager RE, Hawkins GA, Ampleford EJ, Bowden A, Stevens LE, Morton MT, Tomkinson A, Wenzel SE, Longphre M, Bleecker ER, Meyers DA (2010) IL-4 receptor alpha polymorphisms are predictors of a pharmacogenetic response to a novel IL-4/IL-13 antagonist. J Allergy Clin Immunol 126(4):875–878. PubMedPubMedCentralCrossRefGoogle Scholar
  103. Slager RE, Otulana BA, Hawkins GA, Yen YP, Peters SP, Wenzel SE, Meyers DA, Bleecker ER (2012) IL-4 receptor polymorphisms predict reduction in asthma exacerbations during response to an anti-IL-4 receptor alpha antagonist. J Allergy Clin Immunol 130(2):516–522.e514. PubMedPubMedCentralCrossRefGoogle Scholar
  104. Soler M, Matz J, Townley R, Buhl R, O’Brien J, Fox H, Thirlwell J, Gupta N, Della Cioppa G (2001) The anti-IgE antibody omalizumab reduces exacerbations and steroid requirement in allergic asthmatics. Eur Respir J 18(2):254–261PubMedCrossRefGoogle Scholar
  105. Tan WC (2005) Viruses in asthma exacerbations. Curr Opin Pulm Med 11(1):21–26PubMedGoogle Scholar
  106. Tan LD, Bratt JM, Godor D, Louie S, Kenyon NJ (2016) Benralizumab: a unique IL-5 inhibitor for severe asthma. J Asthma Allergy 9:71–81. PubMedPubMedCentralCrossRefGoogle Scholar
  107. Teo SM, Mok D, Pham K, Kusel M, Serralha M, Troy N, Holt BJ, Hales BJ, Walker ML, Hollams E, Bochkov YA, Grindle K, Johnston SL, Gern JE, Sly PD, Holt PG, Holt KE, Inouye M (2015) The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 17(5):704–715. PubMedPubMedCentralCrossRefGoogle Scholar
  108. Tomosada Y, Chiba E, Zelaya H, Takahashi T, Tsukida K, Kitazawa H, Alvarez S, Villena J (2013) Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection. BMC Immunol 14:40. PubMedPubMedCentralCrossRefGoogle Scholar
  109. van Rensen EL, Evertse CE, van Schadewijk WA, van Wijngaarden S, Ayre G, Mauad T, Hiemstra PS, Sterk PJ, Rabe KF (2009) Eosinophils in bronchial mucosa of asthmatics after allergen challenge: effect of anti-IgE treatment. Allergy 64(1):72–80. PubMedCrossRefGoogle Scholar
  110. Vignola AM, Humbert M, Bousquet J, Boulet LP, Hedgecock S, Blogg M, Fox H, Surrey K (2004) Efficacy and tolerability of anti-immunoglobulin E therapy with omalizumab in patients with concomitant allergic asthma and persistent allergic rhinitis: SOLAR. Allergy 59(7):709–717. PubMedCrossRefGoogle Scholar
  111. Wang Y, Misumi I, Gu AD, Curtis TA, Su L, Whitmire JK, Wan YY (2013) GATA-3 controls the maintenance and proliferation of T cells downstream of TCR and cytokine signaling. Nat Immunol 14(7):714–722. PubMedPubMedCentralCrossRefGoogle Scholar
  112. Wenzel SE (2006) Asthma: defining of the persistent adult phenotypes. Lancet 368(9537):804–813. PubMedCrossRefGoogle Scholar
  113. Wenzel SE (2013) Complex phenotypes in asthma: current definitions. Pulm Pharmacol Ther 26(6):710–715. PubMedCrossRefGoogle Scholar
  114. Wenzel SE, Szefler SJ, Leung DY, Sloan SI, Rex MD, Martin RJ (1997) Bronchoscopic evaluation of severe asthma. Persistent inflammation associated with high dose glucocorticoids. Am J Respir Crit Care Med 156(3 Pt 1):737–743. PubMedCrossRefGoogle Scholar
  115. Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, Chu HW (1999) Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 160(3):1001–1008. PubMedCrossRefGoogle Scholar
  116. Wenzel S, Wilbraham D, Fuller R, Getz EB, Longphre M (2007) Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet 370(9596):1422–1431. PubMedCrossRefGoogle Scholar
  117. Wenzel SE, Barnes PJ, Bleecker ER, Bousquet J, Busse W, Dahlen SE, Holgate ST, Meyers DA, Rabe KF, Antczak A, Baker J, Horvath I, Mark Z, Bernstein D, Kerwin E, Schlenker-Herceg R, Lo KH, Watt R, Barnathan ES, Chanez P, Investigators TA (2009) A randomized, double-blind, placebo-controlled study of tumor necrosis factor-alpha blockade in severe persistent asthma. Am J Respir Crit Care Med 179(7):549–558. PubMedCrossRefGoogle Scholar
  118. Wenzel S, Ford L, Pearlman D, Spector S, Sher L, Skobieranda F, Wang L, Kirkesseli S, Rocklin R, Bock B, Hamilton J, Ming JE, Radin A, Stahl N, Yancopoulos GD, Graham N, Pirozzi G (2013) Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med 368(26):2455–2466. PubMedCrossRefGoogle Scholar
  119. Wenzel S, Castro M, Corren J, Maspero J, Wang L, Zhang B, Pirozzi G, Sutherland ER, Evans RR, Joish VN, Eckert L, Graham NM, Stahl N, Yancopoulos GD, Louis-Tisserand M, Teper A (2016) Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting beta2 agonist: a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet 388(10039):31–44. PubMedCrossRefGoogle Scholar
  120. White B, Leon F, White W, Robbie G (2009) Two first-in-human, open-label, phase I dose-escalation safety trials of MEDI-528, a monoclonal antibody against interleukin-9, in healthy adult volunteers. Clin Ther 31(4):728–740. PubMedCrossRefGoogle Scholar
  121. Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD (1998) Interleukin-13: central mediator of allergic asthma. Science 282(5397):2258–2261PubMedCrossRefGoogle Scholar
  122. Woodruff PG, Boushey HA, Dolganov GM, Barker CS, Yang YH, Donnelly S, Ellwanger A, Sidhu SS, Dao-Pick TP, Pantoja C, Erle DJ, Yamamoto KR, Fahy JV (2007) Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc Natl Acad Sci USA 104(40):15858–15863. PubMedPubMedCentralCrossRefGoogle Scholar
  123. Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, Ellwanger A, Koth LL, Arron JR, Fahy JV (2009) T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med 180(5):388–395. PubMedPubMedCentralCrossRefGoogle Scholar
  124. Wu W, Bleecker E, Moore W, Busse WW, Castro M, Chung KF, Calhoun WJ, Erzurum S, Gaston B, Israel E, Curran-Everett D, Wenzel SE (2014) Unsupervised phenotyping of Severe Asthma Research Program participants using expanded lung data. J Allergy Clin Immunol 133(5):1280–1288. PubMedPubMedCentralCrossRefGoogle Scholar
  125. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, Oliver P, Huang W, Zhang P, Zhang J, Shellito JE, Bagby GJ, Nelson S, Charrier K, Peschon JJ, Kolls JK (2001) Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 194(4):519–527PubMedPubMedCentralCrossRefGoogle Scholar
  126. Ying S, O’Connor B, Ratoff J, Meng Q, Mallett K, Cousins D, Robinson D, Zhang G, Zhao J, Lee TH, Corrigan C (2005) Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol 174(12):8183–8190PubMedCrossRefGoogle Scholar
  127. Ying S, O’Connor B, Ratoff J, Meng Q, Fang C, Cousins D, Zhang G, Gu S, Gao Z, Shamji B, Edwards MJ, Lee TH, Corrigan CJ (2008) Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. J Immunol 181(4):2790–2798PubMedCrossRefGoogle Scholar
  128. Zhu J (2015) T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine 75(1):14–24. PubMedPubMedCentralCrossRefGoogle Scholar
  129. Zissler UM, Chaker AM, Effner R, Ulrich M, Guerth F, Piontek G, Dietz K, Regn M, Knapp B, Theis FJ, Heine H, Suttner K, Schmidt-Weber CB (2016a) Interleukin-4 and interferon-gamma orchestrate an epithelial polarization in the airways. Mucosal Immunol 9(4):917–926. PubMedCrossRefGoogle Scholar
  130. Zissler UM, Esser-von Bieren J, Jakwerth CA, Chaker AM, Schmidt-Weber CB (2016b) Current and future biomarkers in allergic asthma. Allergy 71(4):475–494. PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Center of Allergy & Environment (ZAUM)Technical University of MunichMunichGermany
  2. 2.Helmholtz Center MunichGerman Research Center for Environmental HealthMunichGermany
  3. 3.German Center for Lung Research (DZL), CPC-MMunichGermany

Personalised recommendations