Skip to main content

HDMR-Based Sensitivity Analysis and Uncertainty Quantification of GOCE Aerodynamics Using DSMC

  • Conference paper
  • First Online:
Stardust Final Conference

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 52))

Abstract

A sensitivity analysis of aerodynamic coefficients has been performed by coupling a Direct Simulation Monte Carlo method and a High Dimensional Model Representation based uncertainty quantification approach. The study has been performed on the Gravity Field and Steady-State Ocean Circulation Explorer satellite. The uncertainty on aerodynamics has been quantified with respect to atmospheric parameters, which have been obtained using the NRLMSISE-00 atmospheric model, within a free molecular flow regime in the Low Earth Atmosphere. The aerodynamic simulations have been performed with the dsmcFoam code, based on the open-source OpenFOAM platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailey, A., Hiatt, J.: Sphere drag coefficients for a broad range of Mach and Reynolds numbers. AIAA J. 10(11), 1436–1440 (1972)

    Article  ADS  Google Scholar 

  2. Bird, G.: Definition of mean free path for real gases. Phys. Fluids (1958–1988) 26(11), 3222–3223 (1983)

    Google Scholar 

  3. Bird, G.A.: Direct simulation and the Boltzmann equation. Phys. Fluids (1958–1988) 13(11), 2676–2681 (1970)

    Google Scholar 

  4. Cook, G.: Satellite drag coefficients. Planet. Space Sci. 13(10), 929–946 (1965)

    Article  ADS  Google Scholar 

  5. Gini, F., Otten, M., Springer, T., Enderle, W., Lemmens, S., Flohrer, T.: Precise orbit determination for the GOCE re-entry phase. In: Proceedings of the Fifth International GOCE User Workshop

    Google Scholar 

  6. Hirschfelder, J.O., Curtiss, C.F., Bird, R.B., Mayer, M.G.: Molecular Theory of Gases and Liquids, vol. 26. Wiley, New York (1954)

    MATH  Google Scholar 

  7. Kubicek, M., Minisci, E., Cisternino, M.: High dimensional sensitivity analysis using surrogate modeling and high dimensional model representation. Int. J. Uncertain. Quantif. 5(5), 393–414 (2015)

    Article  MathSciNet  Google Scholar 

  8. Moe, K., Moe, M.M.: Gas–surface interactions and satellite drag coefficients. Planet. Space Sci. 53(8), 793–801 (2005)

    Article  ADS  Google Scholar 

  9. Moe, K., Moe, M.M., Wallace, S.D.: Improved satellite drag coefficient calculations from orbital measurements of energy accommodation. J. Spacecr. Rocket. 35(3), 266–272 (1998)

    Article  ADS  Google Scholar 

  10. OpenCFD Ltd: openFOAM Software Package, Ver. 2.3, Bracknell. http://www.openfoam.com/ (2016)

  11. Opiela, J.N., Hillary, E., Whitlock, D.O., M., H.: Debris assessment software, user guide. Technical report, NASA Lyndon B. Johnson Space Center (2012)

    Google Scholar 

  12. Picone, J.M., Heding, A.E., Drob, D.P., Aikin, A.C.: NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. Space Phys. 107(A12) (2002)

    Google Scholar 

  13. Rochelle, W.C., Kinsey, R.E., Reid, E.A., Reynolds, R.C., Johnson, N.L.: Spacecraft orbital debris reentry: aerothermal analysis (1997)

    Google Scholar 

  14. Scanlon, T.J., Roohi, E., White, C., Darbandi, M., Reese, J.M.: An open source, parallel DSMC code for rarefied gas flows in arbitrary geometries. Comput. Fluids 39(10), 2078–2089 (2010)

    Article  MATH  Google Scholar 

  15. Scanlon, T.J., White, C., Borg, M.K., Palharini, R.C., Farbar, E., Boyd, I.D., Reese, J.M., Brown, R.E.: Open-source direct simulation monte carlo chemistry modeling for hypersonic flows. AIAA J. 53(6), 1670–1680 (2015)

    Article  ADS  Google Scholar 

  16. Steiger, C., Romanazzo, M., Floberghagen, R., Fehringer, M., Emanuelli, P.: The deorbiting of GOCE-a spacecraft operations perspective. In: ESA Special Publication, vol. 728, p. 19 (2015)

    ADS  Google Scholar 

  17. Whitfield, D.L., Stephenson, W.B.: Sphere drag in the free-molecular and transitional flow regimes. Technical report, DTIC Document (1970)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to state that the results were obtained using the EPSRC funded ARCHIE-WeSt High Performance Computer (www.archie-west.ac.uk). EPSRC grant no. EP/K000586/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Falchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Falchi, A., Minisci, E., Kubicek, M., Vasile, M., Lemmens, S. (2018). HDMR-Based Sensitivity Analysis and Uncertainty Quantification of GOCE Aerodynamics Using DSMC. In: Vasile, M., Minisci, E., Summerer, L., McGinty, P. (eds) Stardust Final Conference. Astrophysics and Space Science Proceedings, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-319-69956-1_18

Download citation

Publish with us

Policies and ethics