Mechanical Design and Packaging of Battery Packs for Electric Vehicles

  • Shashank Arora
  • Ajay Kapoor
Part of the Green Energy and Technology book series (GREEN)


Safety and reliability are the two key challenges for large-scale electrification of road transport sector. Current Li-ion battery packs are prone to failure due to reasons such as continuous transmission of mechanical vibrations, exposure to high impact forces and, thermal runaway. Robust mechanical design and battery packaging can provide greater degree of protection against all of these. This chapter discusses design elements like thermal barrier and gas exhaust mechanism that can be integrated into battery packaging to mitigate the high safety risks associated with failure of an electric vehicle (EV) battery pack. Several patented mechanical design solutions, developed with an aim to increase crashworthiness and vibration isolation in EV battery pack, are discussed. Lastly, mechanical design of the battery pack of the first fully electric bus designed and developed in Australia is presented. This case study showcases the benefits of adopting modularity in the design of EVs. In addition, it highlights the importance of packaging space for EVs, particularly in low-floor electric buses, as weight distribution becomes a challenge in these applications.


Modular design Thermal runaway Vehicle impact and crash protection Vibration isolation Gas exhaust/venting mechanism Electric bus 



Financial support from the Cooperative Research Centre for Advanced Automotive Technology (AutoCRC), Australia, for undertaking this research study is duly acknowledged. Also, support of the eBus project team at Swinburne University of Technology was useful in development of this chapter.


  1. 1.
    UNFCCC. Paris Declaration on Electro-Mobility and Climate Change and Call to Action. Electrifying Sustainable Transport. 2015. Available at: Accessed 25 Sept 2017
  2. 2.
    L. Ahmadi, M. Fowler, S.B. Young, R.A. Fraser, B. Gaffney, S.B. Walker, Sustain. Energy Technol. Assess. 8, 9 (2014)Google Scholar
  3. 3.
    C. Jhu, Y. Wang, C. Wen, C. Shu, Appl. Energy 100, 127 (2012)CrossRefGoogle Scholar
  4. 4.
    C. Julien, Design Considerations for Lithium Batteries, in Materials for Lithium-Ion Batteries, ed. by C. Julien, Z. Stoynov (Springer, Berlin, 2000), p. 1Google Scholar
  5. 5.
    B. Diouf, R. Pode, Renew. Energy 76, 375 (2015)CrossRefGoogle Scholar
  6. 6.
    D. Miranda, C. Costa, S. Lanceros-Mendez, J. Electroanal. Chem. 739, 97 (2015)CrossRefGoogle Scholar
  7. 7.
    N. Alias, A.A. Mohamad, J. Power Sour. 274, 237 (2015)CrossRefGoogle Scholar
  8. 8.
    H. Han, H. Park, K.C. Kil, Y. Jeon, Y. Ko, C. Lee, M. Kim, C. Cho, K. Kim, U. Paik, Electrochim. Acta 166, 367 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Lu, Y. Chang, B. Song, H. Xia, J. Yang, K.S. Lee, L. Lu, J. Power Sour. 271, 604 (2014)CrossRefGoogle Scholar
  10. 10.
    X. Sun, X. Zhang, B. Huang, H. Zhang, D. Zhang, Y. Ma, J. Power Sour. 243, 361 (2013)CrossRefGoogle Scholar
  11. 11.
    G. Wang, Z. Ma, G. Shao, L. Kong, W. Gao, J. Power Sour. 291, 209 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Wu, M. Liu, G. Long, K. Wan, Z. Liang, T.S. Zhao, Appl. Energy 136, 576 (2014)CrossRefGoogle Scholar
  13. 13.
    B. Nykvist, M. Nilsson, Nat. Clim. Change 5, 329 (2015)CrossRefGoogle Scholar
  14. 14.
    E.V. Tech, EV Batteries - Falling Prices for a Clean Air Future (2015). Available at: Accessed 11 Aug 2017
  15. 15.
    C. Arbizzani, G. Gabrielli, M. Mastragostino, J. Power Sour. 196, 4801 (2011)CrossRefGoogle Scholar
  16. 16.
    C.L. Campion, W. Li, B.L. Lucht, J. Electrochem. Soc. 152, A2327 (2005)CrossRefGoogle Scholar
  17. 17.
    D.H. Doughty, P.C. Butler, R.G. Jungst, E.P. Roth, J. Power Sour. 110, 357 (2002)CrossRefGoogle Scholar
  18. 18.
    C. Jhu, Y. Wang, C. Wen, C. Chiang, C. Shu, J. Therm. Anal. Calorim. 106, 159 (2011)CrossRefGoogle Scholar
  19. 19.
    G. Kim, A. Pesaran, R. Spotnitz, J. Power Sour. 170, 476 (2007)CrossRefGoogle Scholar
  20. 20.
    J. Lamb, C.J. Orendorff, L.A.M. Steele, S.W. Spangler, J. Power Sour. 283, 517 (2015)CrossRefGoogle Scholar
  21. 21.
    N.S. Spinner, C.R. Field, M.H. Hammond, B.A. Williams, K.M. Myers, A.L. Lubrano, S.L. Rose-Pehrsson, S.G. Tuttle, J. Power Sour. 279, 713 (2015)CrossRefGoogle Scholar
  22. 22.
    S. Arora, W. Shen, A. Kapoor, Designing a Robust Battery Pack for Electric Vehicles Using a Modified Parameter Diagram, SAE Technical Paper 2015-01-0041, 2015,
  23. 23.
    Z. Rao, S. Wang, M. Wu, Z. Lin, F. Li, Energy Convers. Manage. 65, 92 (2013)CrossRefGoogle Scholar
  24. 24.
    N. Sato, J. Power Sour. 99, 70 (2001)CrossRefGoogle Scholar
  25. 25.
    J.M. Hooper, J. Marco, J. Power Sour. 245, 510 (2014)CrossRefGoogle Scholar
  26. 26.
    S. Arora, W. Shen, A. Kapoor, Renew. Sust. Energy Rev. 60, 1319 (2016)CrossRefGoogle Scholar
  27. 27.
    L.H. Saw, Y. Ye, A.A. Tay, J. Clean. Prod. 113, 1032 (2016)CrossRefGoogle Scholar
  28. 28.
    B. Coleman, J. Ostanek, J. Heinzel, Appl. Energy 180, 14 (2016)CrossRefGoogle Scholar
  29. 29.
    J.A. Jeevarajan, E.C. Darcy, Can Cell to Cell Thermal Runaway Propagation be Prevented in a Li-ion Battery Module? JSC-CN-32020 (2014)Google Scholar
  30. 30.
    J. Jeevarajan, C. Lopez, J. Orieukwu, Preventing Cell-to-Cell Thermal Runaway in Lithium-Ion Battery Modules. NASA Tech. Briefs (2014)Google Scholar
  31. 31.
    S. Al Hallaj, H. Maleki, J. Hong, J.R. Selman, J. Power Sour. 83, 1 (1999)CrossRefGoogle Scholar
  32. 32.
    S.C. Levy, J. Power Sour. 68, 75 (1997)CrossRefGoogle Scholar
  33. 33.
    P. Frey, D. Grace, Battery Pack Exhaust Nozzle Utilizing an SMA Seal Retainer (Tesla Motors Inc, USA, 2013)Google Scholar
  34. 34.
    W.A. Hermann, Rigid Cell Separator for Minimizing Thermal Runaway Propagation within a Battery Pack (Tesla Motors Inc., USA, 2012)Google Scholar
  35. 35.
    D. Andrea, Battery Management Systems for Large Lithium-Ion Battery Packs, Artech House (2010)Google Scholar
  36. 36.
    GM Announce Structural and Battery Enhancements for Chevy Volt. 2012. Available at: Accessed 25 Aug 2017
  37. 37.
    A. Marino, Audi E-Tron Sportback Concept Architecture of E-mobility. 2017. Available at: Accessed 25 Aug 2017
  38. 38.
    Y. Xia, T. Wierzbicki, E. Sahraei, X. Zhang, J. Power Sour. 267, 78 (2014)CrossRefGoogle Scholar
  39. 39.
    J. Kukreja, T. Nguyen, T. Siegmund, W. Chen, W. Tsutsui, K. Balakrishnan, H. Liao, N. Parab, Extreme Mech. Lett. 9, 371 (2016)CrossRefGoogle Scholar
  40. 40.
    A. Charbonneau, M. Burgess, V. Attaluri, H.L. Gadhiya, A.P. Clarke, P.D. Rawlinson, R.D. Sumpf, B.P. Edwards, System for Absorbing and Distributing Side Impact Energy Utilizing an Integrated Battery Pack and Side Sill Assembly (Tesla Motors Inc., USA, 2014)Google Scholar
  41. 41.
    M. Lucas, Structural Battery Duct Assembly. U.S. Patent 8,276,696 (2012)Google Scholar
  42. 42.
    K. Watanabe, T. Abe, T. Saito, O. Shimamura, K. Hosaka, H. Sato, H. Horie, Battery Structure, Assembled Battery, and Vehicle Mounting These Thereon. U.S. Patent 8,124,276 B2 (2012)Google Scholar
  43. 43.
    S. Zhou, C.C. Husted, F.A. Benjamin, Battery Pack Arrangements (General Motors Co., USA, 2009)Google Scholar
  44. 44.
    M. Iwasa, S. Ogata, H. Kadota, T. Hashimura, N. Mori, Vehicle Battery Mounting Structure (Nissan Motor Co., USA, 2013)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.School of EngineeringAalto UniversityEspooFinland
  2. 2.Faculty of Science, Engineering and TechnologySwinburne University of TechnologyHawthornAustralia

Personalised recommendations