Electric Commercial Vehicles in Mid-Haul Logistics Networks

  • Maximilian Schiffer
  • Sebastian Stütz
  • Grit Walther
Part of the Green Energy and Technology book series (GREEN)


Recent research on electric commercial vehicles (ECVs) has mostly been limited to short-haul applications and single planning perspectives. Especially in mid-haul logistics networks where recharging on routes is necessary, integrated planning approaches become inevitable due to interdependent decisions on network design and vehicle operations. This chapter provides an overview of planning approaches for ECVs that have been presented so far and presents a generic modeling approach for integrated TCO analysis, taking strategic network design and operational vehicle routing and recharging decisions into consideration. This approach is then applied to a real-world case study of a large German retail company. We discuss results with respect to the competitiveness of ECVs compared to ICEVs. Herein, we study economic and ecological benefits. Furthermore, we analyze battery degradation effects from a technical point of view. Results show that ECVs are on the verge of breaking even in mid-haul logistics for certain application cases.


  1. 1.
    European Environment Agency, EU. Energy, transport and GHG emissions trends to 2050 (2013). Available from: Accessed 07.06.17
  2. 2.
    European Commission, EU. Transport in figures, Statistical pocketbook (2014). Available from: Accessed 07.06.17
  3. 3.
    European Union, Urban access regulation in Europe (2016). Available from: Accessed 07.06.17
  4. 4.
    Statista, Annual retail e-commerce sales growth worldwide from 2014 to 2020 (2016). Available from: Accessed 07.06.17
  5. 5.
    European Commission, Report from the commission to the European Parliament and the council—progress towards achieving the Kyoto and EU 2020 objectives (2014). Available from: Accessed 07.06.17
  6. 6.
    DPDHL, Deutsche Post testet 12 neue Renault-Elektrofahrzeuge (2011). Available from: Accessed 07.06.17
  7. 7.
    M. Pieringer, Deutsche Post wechselt in Bonn und Umland komplett auf Elektrofahrzeuge (2013). Available from: Accessed 07.06.17
  8. 8.
    DPDHL, Deutsche Post DHL Group macht Bonn zur Musterstadt für CO2-freie Zustellfahrzeuge (2013). Available from: Accessed 07.06.17
  9. 9.
    DPDHL, Electric vehicles in inner city distribution traffic (2014). Available from: Accessed 07.06.17
  10. 10.
    DPDHL, Deutsche Post DHL übernimmt StreetScooter GmbH (2014). Available from: Accessed 07.06.17
  11. 11.
    UPS: UPS to Rollout Fleet of Electric Vehicles in California (2013). Available from: Accessed 07.06.17
  12. 12.
    S. Stütz, A. Bernsmann, T. Baltzer, N. Hentschel, K. Pommerenke, B. Rogmann, P. Wunderlin, Elmo-Elektromobile Urbane Wirtschaftsverkehre (2016). Available from: Accessed 07.06.17
  13. 13.
    M. Schiffer, S. Stütz, G. Walther, Are ECVs breaking even? Competitiveness of electric commercial vehicles in retail logistics (2017). Available from:
  14. 14.
    F. Baouche, R. Billot, N.-E. El Faouzi, R. Trigui, Electric vehicle charging stations allocation model. ROADEF-15ème congrès annuel de la Société française de recherche opérationnelle et d’aide à la decision (2014)Google Scholar
  15. 15.
    H. Cai, X. Jia, A.S. Chiu, X. Hu, M. Xu, Transp. Res. D Transp. Environ. 33, 39 (2014)CrossRefGoogle Scholar
  16. 16.
    Y.-W. Wang, Transp. Res. D Transp. Environ. 13, 193 (2008)CrossRefGoogle Scholar
  17. 17.
    T.D. Chen, K. Kockelman, Transp. Res. Rec. 1254, 28 (2013)CrossRefGoogle Scholar
  18. 18.
    Y.-W. Wang, C.-C. Lin, Transp. Res. E Logist. Transp. Rev. 45, 16 (2009)CrossRefGoogle Scholar
  19. 19.
    Y.-W. Wang, C.-R. Wang, Transp. Res. E Logist. Transp. Rev. 46, 791 (2010)CrossRefGoogle Scholar
  20. 20.
    J. Cavadas, G.H. de Almeida Correia, J. Gouveia, Transp. Res. E Logist. Transp. Rev. 75, 188 (2015)Google Scholar
  21. 21.
    M.J. Hodgson, Geogr. Anal. 22, 270 (1990)CrossRefGoogle Scholar
  22. 22.
    M. Kuby, S. Lim, Socio-Econ. Plan. Sci. 39, 125 (2005)CrossRefGoogle Scholar
  23. 23.
    M. Kuby, S. Lim, Netw. Spat. Econ. 7, 129 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    S. Lim, M. Kuby, Eur. J. Oper. Res. 204, 51 (2010)CrossRefGoogle Scholar
  25. 25.
    C. Upchurch, M. Kuby, S. Lim, Geogr. Anal. 41, 85 (2009)CrossRefGoogle Scholar
  26. 26.
    I. Capar, M. Kuby, V.J. Leon, Y.J. Tsai, Eur. J. Oper. Res. 227, 142 (2013)CrossRefGoogle Scholar
  27. 27.
    S.A. MirHassani, R. Ebrazi, Transp. Sci. 47, 617 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Yang, H. Sun, Comput. Oper. Res. 55, 217 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    M. Schiffer, G. Walther, Eur. J. Oper. Res. 260, 995 (2017)CrossRefGoogle Scholar
  30. 30.
    M. Schiffer, S. Stütz, G. Walther, Are ECVs breaking even? Competitiveness of electric commercial vehicles in medium-duty logistics networks (2016). Available from:
  31. 31.
    M. Schiffer, G. Walther, Strategic planning of electric logistic networks: a robust location routing approach. Omega (2017)Google Scholar
  32. 32.
    M. Schiffer, G. Walther, An adaptive large neighborhood search for the location-routing problem with intra-route facilities. Transp. Sci. (2017)Google Scholar
  33. 33.
    M. Schiffer, M. Schneider, G. Laporte, Eur. J. Oper. Res. 265, 517 (2017)CrossRefGoogle Scholar
  34. 34.
    S. Erdogan, E. Miller-Hooks, Transp. Res. E Logist. Transp. Rev. 48, 100 (2012)CrossRefGoogle Scholar
  35. 35.
    M. Schneider, A. Stenger, D. Goeke, Transp. Sci. 48, 500 (2014)CrossRefGoogle Scholar
  36. 36.
    A. Felipe, M.T. Ortuno, G. Righini, G. Tirado, Transp. Res. E Logist. Transp. Rev. 71, 111 (2014)CrossRefGoogle Scholar
  37. 37.
    D. Goeke, M. Schneider, Eur. J. Oper. Res. 245, 81 (2015)CrossRefGoogle Scholar
  38. 38.
    J. Lin, W. Zhou, O. Wolfson, Transp. Res. Proc. 12, 508 (2016)CrossRefGoogle Scholar
  39. 39.
    A. Verma, K. Lamsal, S. Keough, 2015 Electric vehicle routing problem with time windows, recharging stations and battery swapping stations (2015). Available from:
  40. 40.
    G. Desaulniers, F. Errico, S. Irnich, M. Schneider, Oper. Res. 64, 1388 (2016)MathSciNetCrossRefGoogle Scholar
  41. 41.
    M. Keskin, B. Catay, Transp. Res. C Emerg. Technol. 65, 111 (2016)CrossRefGoogle Scholar
  42. 42.
    A. Montoya, C. Guret, J.E. Mendoza, J.G. Villegas, Transport. Res. B Methodol. 103, 87 (2017)CrossRefGoogle Scholar
  43. 43.
    M. Schiffer, G. Laporte, M. Schneider, G. Walther, The impact of synchronizing driver breaks and recharging operations for electric vehicles (2017). Available from:
  44. 44.
    M. Schiffer, M. Schneider, G. Walther, G. Laporte, Vehicle routing and location-routing with intermediate stops: a review (2017). Available from:
  45. 45.
    D. Aurbach, K. Gamolsky, B. Markovski, G. Salitra, Y. Gofer, U. Heider, R. Oesten, M. Schmidt, J. Electrochem. Soc. 147, 1322 (2000)CrossRefGoogle Scholar
  46. 46.
    A. Wezdanz, W. Jossen, Moderne Akkumulatoren richtig einsetzen (2006)Google Scholar
  47. 47.
    B.A. Davis, M.A. Figliozzi, Transp. Res. E Logist. Transp. Rev. 49, 8 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Maximilian Schiffer
    • 1
  • Sebastian Stütz
    • 2
  • Grit Walther
    • 1
  1. 1.Chair of Operations Management, School of Business and EconomicsRWTH Aachen UniversityAachenGermany
  2. 2.Fraunhofer Institute for Material Flow and LogisticsDortmundGermany

Personalised recommendations