Skip to main content

Increasing the Fuel Economy of Connected and Autonomous Lithium-Ion Electrified Vehicles

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

When the sensors and signals that enable connected and autonomous vehicle (CAV) technology are combined with vehicle electrification, new vehicle control strategies that improve fuel economy (FE) are possible through perception, planning, and a control request issued to the vehicle plant. In this chapter, each CAV technology that could contribute to planning is introduced and discussed. Next, the techniques for modeling and validating a vehicle plant and running controller are discussed. Then, three planning-based control strategies are developed: (1) an Optimal Energy Management Strategy (Optimal EMS), (2) Eco-Driving strategies, and (3) an Optimal EMS combined with Eco-Driving strategies. Each of these planning-based control strategies is evaluated using a validated model of a 2010 Toyota Prius in Autonomie so that engine power, battery state of charge, and FE results can be compared. The results indicate that a 40% + FE improvement is possible when an Optimal EMS is combined with Eco-Driving for city drive cycles. Overall, as more vehicles incorporate CAV technologies and electrification, these FE improvements will be easier to achieve and will have a greater impact on transportation sustainability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Annual Energy Outlook 2017. Energy Information Administration (5 Jan 2017) AEO2017

    Google Scholar 

  2. Z.D. Asher, V. Wifvat, A. Navarro, S. Samuelsen, T.H. Bradley, SAE Technical Paper 2017-26-0106 (2017), https://doi.org/10.4271/2017-26-0106

  3. D.J. Fagnant, K. Kockelman, Transp. Res. A Policy 77, 167–181 (2015)

    Google Scholar 

  4. M. Broussely, in Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, Infrastructure and the Market, ed. by G. Pistoia (Elsevier, Amsterdam, 2010), pp. 305–347

    Google Scholar 

  5. Z.D. Asher, D.A. Baker, T.H. Bradley, IEEE Trans. Control Syst. Tech. PP 99, 1–14 (2017). https://doi.org/10.1109/tcst.2017.2747502

  6. A. Iliaifar, LIDAR, lasers, and logic: anatomy of an autonomous vehicle (2013), www.digitaltrends.com

  7. M. Trimarchi, Do Car GPS Devices Cause Accidents? (Howstuffworks.com., Atlanta, 2017)

    Google Scholar 

  8. M. Bertozzi, A. Broggi, A. Fascioli, Rob. Auton. Syst. 32, 1–16 (2000)

    Google Scholar 

  9. Z. Sun, G. Bebis, R. Miller, IEEE Trans. Pattern Anal. Mach. Intell. 28, 694–711 (2006)

    Google Scholar 

  10. A. Ruta, F. Porikli, S. Watanabe, Y. Li, Mach. Vis. Appl. 22, 359–375 (2011)

    Google Scholar 

  11. F. Lindner, U. Kressel, S. Kaelberer, Robust recognition of traffic signals. IEEE Intell. Veh. Symp. 49–53 (2004)

    Google Scholar 

  12. M.A.S. Kamal, M. Mukai, J. Murata, T. Kawabe, IEEE Trans. Intell. Transp. Syst. 4, 244–251 (2010)

    Google Scholar 

  13. M. Munoz-Organero, V.C. Magana, IEEE Trans. Intell. Transp. Syst. 14, 1023–1028 (2013)

    Google Scholar 

  14. E. Ohn-Bar, A. Tawari, S. Martin, M.M. Trivedi, Comput. Vis. Image Underst. 134, 130–140 (2015)

    Google Scholar 

  15. E. Raphael, R. Kiefer, P. Reisman, G. Hayon, SAE Int. J. Passeng. Cars Mech. Syst. 4, 467–478 (2011)

    Google Scholar 

  16. M.M. Trivedi, T. Gandhi, J. McCall, IEEE Trans. Intell. Transp. Syst. 8, 108–120 (2007)

    Google Scholar 

  17. E. Dagan, O. Mano, G.P. Stein, A. Shashua, Forward collision warning with a single camera. IEEE Intell. Veh. Symp. Proc. 37–42 (2004)

    Google Scholar 

  18. G.P. Stein, O. Mano, A. Shashua, Vision-based ACC with a single camera: bounds on range and range rate accuracy. IEEE Intell. Veh. Symp. Proc. 120–125 (2003)

    Google Scholar 

  19. S. Clark, H. Durrant-Whyte, Autonomous land vehicle navigation using millimeter wave radar, in Proceedings 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146), vol. 4, May 1998, pp. 3697–3702

    Google Scholar 

  20. D.J. Belgiovane, C.C. Chen, S.Y.P. Chien, R. Sherony, IEEE Trans. Intell. Transp. Syst. 99, 1–10 (2017). http://ieeexplore.ieee.org

  21. Z. Ji, M. Luciw, J. Weng, S. Zeng, IEEE Trans. Intell. Transp. Syst. 12, 402–411 (2011)

    Google Scholar 

  22. B. Steux, C. Laurgeau, L. Salesse, D. Wautier, Fade: a vehicle detection and tracking system featuring monocular color vision and radar data fusion. IEEE Intell. Veh. Symp. Proc. 2, 632–639 (2002)

    Google Scholar 

  23. A. Gern, U. Franke, P. Levi, Robust vehicle tracking fusing radar and vision, in IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI’01) (2001) pp. 323–328

    Google Scholar 

  24. P. Themann, T. Uhrner, D. Kuck, M. Müller, M. Klubal, Ecodriving support based on cooperative prediction models, in 19th ITS World Congress (Vienna, Austria, 2012), pp. 22–26

    Google Scholar 

  25. F. Mensing, E. Bideaux, R. Trigui, H. Tattegrain, Transp. Res. Part D Transp. Environ. 18, 55–61 (2013)

    Google Scholar 

  26. S. Tokoro, K. Kuroda, A. Kawakubo, K. Fujita, H. Fujinami, Electronically scanned millimeter-wave radar for pre-crash safety and adaptive cruise control system. IEEE Intell. Veh. Symp. Proc. 304–309 (2003)

    Google Scholar 

  27. G.R. Widmann et al., SAE Technical Paper Series, No. 724 (2000)

    Google Scholar 

  28. F. Rahman, C. O’Brien, K. Manning, Let EcoDrive be your guide: development of a mobile tool to reduce carbon footprint and promote green transport, in Proceedings of the 27th Annual ACM Symposium on Applied Computing (2012), pp. 519–524

    Google Scholar 

  29. K. Jakobsen, S.C.H. Mouritsen, K. Torp, Evaluating eco-driving advice using gps/canbus data, in 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems SIGSPATIAL’13 (2013), pp. 44–53

    Google Scholar 

  30. D.A. Baker, Z.D. Asher, T.H. Bradley, SAE Technical Paper (2017), http://papers.sae.org/2017-01-1262/, https://doi.org/10.4271/2017-01-1262

  31. F.A. Bender, M. Kaszynski, O. Sawodny, IEEE Trans. Veh. Tech. 62(8), 3581–3592 (2013). http://ieeexplore.ieee.org

  32. A.G. Adinolfi, H.K. Kuga, M.L. de Oliveira e Souza, SAE Technical Paper 2013-36-0650 (2013)

    Google Scholar 

  33. Z. Popovic, A. Soloviev, Y. Mochizuki, SAE Technical Paper 2011-01-1035 (2011)

    Google Scholar 

  34. Z. Popovic Y. Mochizuki, SAE Technical Paper 2011-01-1036 (2011)

    Google Scholar 

  35. H. Kitano, H. Kazuo, H. Tanaka, An estimation method of vehicle position for automated driving with GNSS, in SAE World Congress and Exhibition (2016)

    Google Scholar 

  36. E. Stenborg, L. Hammarstrand, Using a single band GNSS receiver to improve relative positioning in autonomous cars, in Intelligent Vehicles Symposium (2016)

    Google Scholar 

  37. F. Meng, S. Tan, S. Wang, B. Zhu, New techniques to enhance the performance of stand-alone GNSS positioning. in International Conference on Communication and Networks (2015), pp. 548–552

    Google Scholar 

  38. M. Campbell, M. Egerstedt, J.P. How, R.M. Murray, Phil. Trans. Series A Math. Phys. Eng. Sci. 368 (1928), 4649–4672 (2010). http://rsta.royalsocietypublishing.org

  39. C. Sun, S.J. Moura, X. Hu, J.K. Hedrick, F. Sun, IEEE Trans. Control Syst. Tech. 23(3), 1075–1086 (2015). http://ieeexplore.ieee.org

  40. C. Sun, F. Sun, H. He, App. Energy 185, 1644–1653 (2017)

    Google Scholar 

  41. C. Smith, The Car Hacker’s Handbook: A Guide for the Penetration Tester (No Starch Press, Inc., San Fransico, 2016)

    Google Scholar 

  42. M. Kerper, C. Wewetzer, H. Trompeter, W. Kiess, M. Mauve, Driving more efficiently—The use of inter-vehicle communication to predict a future velocity profile, in IEEE Vehicular Technology Conference (2011), pp. 1–5

    Google Scholar 

  43. D. Lang, R. Schmied, L. Del Re, SAE Int 7, 14 (2014)

    Google Scholar 

  44. M.A. Mohd Zulkefli, J. Zheng, Z. Sun, H.X. Liu, Transp. Res. Part C Emerg. Technol. 45, 41–63 (2014)

    Google Scholar 

  45. M. Brackstone, M. McDonald, Transp. Res. Part F Traffic Psychol. Behav. 2, 181–196 (1999)

    Google Scholar 

  46. B. Asadi, A. Vahidi, in IFAC Proceedings Volumes 42(15), 484–489 (2009)

    Google Scholar 

  47. B. Asadi, A. Vahidi, IEEE Trans. Control Syst. Technol. 19, 707–714 (2011)

    Google Scholar 

  48. S. Mandava, K. Boriboonsomsin, M. Barth, Arterial velocity planning based on traffic signal information under light traffic conditions, in Proceedings of IEEE Conference on Intelligent Transportation Systems (ITSC) (2009), pp. 1–6

    Google Scholar 

  49. E. Koenders, J. Vreeswijk, Cooperative infrastructure, in IEEE Intelligent Vehicles Symposium, Proceedings (2008), pp. 721–726

    Google Scholar 

  50. Q. Gong, Y. Li, Z.R. Peng, IEEE Trans. Veh. Tech. 57, 3393–3401 (2008)

    Google Scholar 

  51. Q. Gong, Y. Li, Z. Peng, Power Management of plug-in hybrid electric vehicles using neural network based trip modeling, in American Control Conference (2009), pp. 4601–4606. http://ieeexplore.ieee.org

  52. J. Gonder, A. Brooker, E. Burton, L. Wang, E. Wood, Mobility patterns informing V2X research projects: eco-routing and electrified roadway project examples, in Task 28 Workshop, Home Grids and V2X Technologies (2016)

    Google Scholar 

  53. S.E. Li, S. Xu, X. Huang, B. Cheng, H. Peng, IEEE Trans. Veh. Technol. 64, 5439–5449 (2015)

    Google Scholar 

  54. T. Edwards, IEEE Intell. Transp. Syst. Mag. 7, 4 (2015)

    Google Scholar 

  55. D. Krajzewicz, M. Heinrich, M. Milano, COLOMBO: investigating the potential of V2X for traffic management purposes assuming low penetration rates, in 9th ITS European Congress, Dublin (IE), 4–7 June 2013

    Google Scholar 

  56. Y. Chen, D. Zhang, K. Li, Enhanced eco-driving system based on V2X communication, in Proceedings of IEEE Conference on Intelligent Transportation Systems (ITSC) (2012), pp. 200–205

    Google Scholar 

  57. S. Diewald, A. Möller, L. Roalter, M. Kranz, in Proceedings of Mensch und Computer, Konstanz, Germany, 1–8 Sept 2012

    Google Scholar 

  58. C. Weiß, Comput. Netw. 55, 3103–3119 (2011)

    Google Scholar 

  59. B. Schünemann, J.W. Wedel, I. Radusch, Tamkang. J. Sci. Eng. 13, 637–641 (2010)

    Google Scholar 

  60. N. Kim, M. Duoba, A. Rousseau, SAE Int. 6, 985–992 (2013). https://doi.org/10.4271/2013-01-1458

    Google Scholar 

  61. N. Kim, A. Rousseau, E. Rask, SAE Int 2012, 1–14 (2012). https://doi.org/10.4271/2012-01-1040

    Google Scholar 

  62. P. Fritzson, P. Aronsson, H. Lundvall, K. Nyström, A. Pop, L. Saldamli, D. Broman, The OpenModelica modeling, simulation, and development environment, in Conference on Simulation and Modelling of the Scandinavian Simulation Society (SIMS2005) (Trondheim, Norway, 2005)

    Google Scholar 

  63. H. Tummescheit. Ph.D. dissertation, Lund University (2002)

    Google Scholar 

  64. B.M. Geller, T.H. Bradley, SAE Technical Paper (2011). https://doi.org/10.4271/2011-01-0943

  65. Argonne National Lab, Downloadable dynamometer database (D3)—Test 37; summary sheet. PHEV 2012 Toyota Prius, 72°F. https://www.anl.gov/energy-systems/group/downloadable-dynamometer-database/plug-hybrid-electric-vehicles/2012-toyota

  66. C. Lin, J. Kang, J.W. Grizzle, H. Peng, Energy management strategy for a parallel hybrid electric truck, in American Control Conference (Cat. No. 01CH37148), vol. 4 (2001), pp. 2878–83. http://ieeexplore.ieee.org

  67. R. Bellman, Dynamic programming and lagrange multipliers. Proc. Natl. Acad. Sci. USA, 42(10), Nat. Acad Sci. 76 (1956)

    Google Scholar 

  68. N. Kim, S. Cha, H. Peng, IEEE Trans. Control Syst. Technol. 19, 1279–1287 (2011)

    Google Scholar 

  69. V.G. Boltyanskii, R.V. Gamkrelidze, L.S. Pontryagin, The Theory of Optimal Processes. I. The Maximum Principle (TRW Space Technology Laboratories, Los Angeles, California, 1960). http://www.dtic.mil/docs/citations/AD0264147

  70. C. Lin, H. Peng, J.W. Grizzle, A stochastic control strategy for hybrid electric vehicles, in American Control Conference, vol. 5 (2004), pp. 4710–4715. http://ieeexplore.ieee.org

  71. S. Onori, L. Serrao, G. Rizzoni, Adaptive equivalent consumption minimization strategy for hybrid electric vehicles, in 2010 ASME Dynamic Systems and Control Conference, vol. 499 (American Society of Mechanical Engineers, 2010)

    Google Scholar 

  72. D. Bianchi, L. Rolando, L. Serrao, S. Onori, G. Rizzoni, N. Al-Khayat, T. Hsieh, P. Kang, A rule-based strategy for a series/parallel hybrid electric vehicle: an approach based on dynamic programming, in ASME 2010 Dynamic Systems and Control Conference, vol. 507 (American Society of Mechanical Engineers, 2010)

    Google Scholar 

  73. G. Paganelli, S. Delprat, T.M. Guerra, J. Rimaux, J.J. Santin, Equivalent consumption minimization strategy for parallel hybrid powertrains, in IEEE Vehicular Technology Conference VTC Spring 2002 (Cat. No. 02CH37367), vol. 4 (2002), pp. 2076–2081. http://ieeexplore.ieee.org

  74. H.A. Borhan, A. Vahidi, A.M. Phillips, M. L. Kuang, I.V. Kolmanovsky, Predictive energy management of a power-split hybrid electric vehicle, in American Control Conference (2009), pp. 3970–3976. http://ieeexplore.ieee.org

  75. P. Zhang, F. Yan, C. Du, 2015/8. Renew. Sust. Energy Rev. 48, 88–104 (2015)

    Google Scholar 

  76. I. Husain, Electric and Hybrid Vehicles: Design Fundamentals, 2nd edn. (CRC Press, Boca Raton, 2010)

    Google Scholar 

  77. R. Rajamani, Vehicle Dynamics and Control, 2nd edn. (Springer, New York, 2011)

    Google Scholar 

  78. J. Gonder, M. Earleywine, W. Sparks SAE Int. J. Passeng. Cars Electron Electr. Syst. 5, 450–461 (2012-01-0494) (2012). http://papers.sae.org

  79. P. Michel, D. Karbowski, A. Rousseau, SAE Technical Paper (2016). http://papers.sae.org/2016-01-0152/

  80. Y. Saboohi, H. Farzaneh, App. Energy 86, 1925–1932 (2009)

    Google Scholar 

  81. S. Mandava, K. Boriboonsomsin, M. Barth, arterial velocity planning based on traffic signal information under light traffic conditions. IEEE Intell. Trans. Syst. 1–6 (2009). http://ieeexplore.ieee.org

  82. D. Wissam, A. Chasse, A. Sciarretta, P. Moulin, Optimal energy management compliant with online requirements for an electric vehicle in eco-driving, in Workshop on Engine and Powertrain Control, Simulation and Modeling, Rueil-Malmaison, France, Oct 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. Bradley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Asher, Z.D., Trinko, D.A., Bradley, T.H. (2018). Increasing the Fuel Economy of Connected and Autonomous Lithium-Ion Electrified Vehicles. In: Pistoia, G., Liaw, B. (eds) Behaviour of Lithium-Ion Batteries in Electric Vehicles. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-69950-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69950-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69949-3

  • Online ISBN: 978-3-319-69950-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics