The Issue of Metal Resources in Li-Ion Batteries for Electric Vehicles

  • Marcel Weil
  • Saskia Ziemann
  • Jens Peters
Part of the Green Energy and Technology book series (GREEN)


The worldwide development and market penetration of electric vehicles (EVs) and hybrid cars has lagged far behind initial expectations and prognoses. However, more recent discussions about petrol and diesel car emissions seem to accelerate the market penetration of battery-based mobility and other alternative options. Many big car manufacturers have announced that they will offer a broad EV fleet by between 2020 and 2024 at the latest, and some even plan to abandon the production of petrol- and diesel-powered cars completely. This might result in a sharp increase in EV market shares and, consequently, in a significant amount of resources needed to produce traction batteries. At present, EVs are produced mainly using different types of Li-ion batteries (LIBs) and only to a lesser extent other battery systems like NiMH. Also in a midterm perspective, LIBs will probably continue to be the preferred energy storage technology for EVs due to their excellent technical performance. This raises the question of whether we will have enough reserves or resources of key metals such as Li, Co, Ni, Cu, Al, Mn or P required for Li-ion traction batteries. In answering this question, a dynamic material flow analysis (dMFA) was conducted to quantify the global demand for these key metals driven by the increasing number of battery vehicles. The calculations also take into account potential recycling of metals from batteries after the use phase, which significantly reduces the pressure on reserves and resources.


  1. 1.
    E. Heymann, O. Koppel, T. Puls, Electromobility—Falling Costs Are a Must (Deutsche Bank AG, DB Research, Frankfurt am Main, Germany, 2011)Google Scholar
  2. 2.
    H.K. Ng, A.D. Vyas, D.J. Santini, The Prospects for Hybrid Electric Vehicles, 2005–2020: Results of a Delphi Study [ANL Report 1999-01-2942]. Argonne National Laboratories, Argonne, USA (1999)Google Scholar
  3. 3.
    Avicenne, Worldwide Rechargeable Battery Market 2015–2025 (Avicenne Energy, Paris, France, 2016)Google Scholar
  4. 4.
    IEA, Global EV Outlook 2017—Two Million and Counting (International Energy Agency, Paris, France, 2017)Google Scholar
  5. 5.
    V.W. AG, The Volkswagen group launches the most comprehensive electrification initiative in the automotive industry with ‘Roadmap E, Volkswagen AG-News, 11-Sep-2017. [Online]. Available: Accessed: 06 Oct 2017
  6. 6.
    S. Koeller, Daimler beschleunigt seinen Elektrifizierungs-Fahrplan, - Branchendienst für Elektromobilität, Berlin, Germany, 11 Sep 2017Google Scholar
  7. 7.
    K. Lant, China Pushes Electric Vehicles and Makes Producing Fossil Fuel Vehicles Tougher, Futurism—Earth & Energy, 30 Sep 2017Google Scholar
  8. 8.
    Öko-Institut, Strategien für die nachhaltige Rohstoffversorgung der Elektromobilität. Synthesepapier zum Rohstoffbedarf für Batterien und Brennstoffzellen. Studie im Auftrag von Agora Verkehrswende, Darmstadt, Germany, 04–2017–DE, 2017Google Scholar
  9. 9.
    C. Bauer, J. Hofer, H.-J. Althaus, A. Del Duce, A. Simons, App. Energy 157, 871 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Weil, J.F. Peters, M.J. Baumann, H. Dura, B.M. Zimmermann, Elektrochemische Energiespeicher für mobile Anwendungen im Fokus der Systemanalyse. TATuP 24, 20 (2015)Google Scholar
  11. 11.
    M. Weil, S. Ziemann, in Lithium-Ion Batteries: Advances and Applications, 1st edn., ed. by G. Pistoia (Elsevier, Amsterdam, 2014), pp. 509–528CrossRefGoogle Scholar
  12. 12.
    B. Simon, S. Ziemann, M. Weil, Resour. Conserv. Recy. 104, 300 (2015)CrossRefGoogle Scholar
  13. 13.
    G. Majeau-Bettez, T.R. Hawkins, A.H. Strømman, Environ. Sci. Technol. 45, 4548 (2011)CrossRefGoogle Scholar
  14. 14.
    L.A.-W. Ellingsen, G. Majeau-Bettez, B. Singh, A.K. Srivastava, L.O. Valøen, A.H. Strømman, J. Ind. Ecol. 18, 113 (2014)CrossRefGoogle Scholar
  15. 15.
    J.F. Peters, B. Simon, G. Rodriguez-Garcia, M. Weil, Building a Common Base for LCA Benchmarking of Li-Ion Batteries, 26th SETAC Ann (Meeting, Nantes, France, 2016)Google Scholar
  16. 16.
    J.F. Peters, M. Weil, J. Clean. Prod. Available online: 7 Oct 2017Google Scholar
  17. 17.
    C. Bauer, Ökobilanz von Lithium-Ionen Batterien (Paul Scherrer Institut, Labor für Energiesystem-Analysen (LEA), Villigen, Switzerland, 2010)Google Scholar
  18. 18.
    M. Zackrisson, L. Avellán, J. Orlenius, J. Clean. Prod. 18, 1519 (2010)CrossRefGoogle Scholar
  19. 19.
    D.A. Notter et al., Environ. Sci. Technol. 44, 6550 (2010)CrossRefGoogle Scholar
  20. 20.
    IEA, Energy Technology Transitions for Industry—Strategies for the Next Industrial Revolution, International Energy Agency, Paris, France, 2009Google Scholar
  21. 21.
    D.B. Müller, Ecol. Econ. 59, 142 (2006)CrossRefGoogle Scholar
  22. 22.
    UN, World Population in 2300, Department of Economic and Social Affairs, United Nations (UN), New York, US, ST/ESA/SER.A/236, 2004Google Scholar
  23. 23.
    R. Modaresi, D.B. Müller, Environ. Sci. Technol. 46, 8587 (2012)CrossRefGoogle Scholar
  24. 24.
    M. Weil, S. Ziemann, B. Zimmermann, New Materials and Components for Future Batteries—A Resource Perspective, World of Energy Solutions Battery & storage—Materials and Components (Stuttgart, Germany, 2013)Google Scholar
  25. 25.
    R. Ball, N. Keers, A. Marcus, E. Bower, Mobile Energy Resources for Grids of Electricity (MERGE)—Deliverable 2.1: Modelling Electric Storage Devices for Electric Vehicles, Project Deliverable, 2011Google Scholar
  26. 26.
    D.B. Müller, J. Cao, E. Kongar, M. Altonji, P.-H. Weiner, T.E. Graedel, Service lifetimes of mineral end uses, U.S. Geological Survey (USGS) [Final Report, Minerals Resources External Research Program, Award Number: 06HQGR0174] (2007)Google Scholar
  27. 27.
    D. Kushnir, B.A. Sandén, J. Clean. Prod. 19, 1405 (2011)CrossRefGoogle Scholar
  28. 28.
    P. Keil, A. Jossen, Aging of Lithium-Ion Batteries in Electric Vehicles: Impact of Regenerative Braking, EVS28 (Kintex, Corea, 2015)Google Scholar
  29. 29.
    Green Car Congress, BMW boosts battery capacity of MY2017 i3 to 33 kWh with higher energy density Li-ion cells; up to 114 miles combined cycle range, Green Car Congress, 02 May 2017Google Scholar
  30. 30.
    ILA, Environmental and Social Responsibility for the 21st Century (International Lead Association (ILA), London, United Kingdom, 2014)Google Scholar
  31. 31.
    M. Romare, L. Dahllöf, The Life Cycle Energy Consumption and Greenhouse Gas Emissions from Lithium Ion Batteries. A Study with Focus on Current Technology and Batteries for Light-Duty Vehicles, IVL Swedish Environmental Research Institute, Stockholm, Sweden, ivl Study C 243, 2017Google Scholar
  32. 32.
    US Geological Survey, Mineral Commodity Summaries 2016. US Geological SurveyGoogle Scholar
  33. 33.
    M. Keller, C. Vaalma, D. Buchholz, S. Passerini, ChemElectroChem 3, 1124 (2016)CrossRefGoogle Scholar
  34. 34.
    Z. Zhao-Karger et al., J. Power Sources 323, 213 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Helmholtz Institute Ulm (HIU), KITUlmGermany

Personalised recommendations