Skip to main content

Maksimova, Relevance and the Study of Lattices of Non-classical Logics

  • Chapter
  • First Online:
Book cover Larisa Maksimova on Implication, Interpolation, and Definability

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 15))

  • 292 Accesses

Abstract

We outline the main stages of Maksimova’s investigation and present in details her results published between 1972 and 1979 and concerning the study of pretabularity and interpolation properties in superintuitionisitc logics and in normal extensions of the logic S4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    See Chap. 3.

  2. 2.

    Recall that the trivial logic coinciding with the set of all formulas is the only superintuitionistic logic, which is not intermediate.

  3. 3.

    Recall that \( \langle A, \& , \vee , \supset , \lnot , 1\rangle \) is a pseudo-Boolean algebra if \( \langle A, \& , \vee \rangle \) is a bounded lattice with the greatest element 1 with restpect to its lattice ordering \(\le \) and the operations \(\supset \) and \(\lnot \) are such that:

    $$ \begin{aligned} c\le a\supset b\ \ \text{ iff }\ \ a \& c\le b; \ \ b\le \lnot a\ \ \text{ iff }\ \ a \& b=0, \end{aligned}$$

    where 0 is the least element with respect to \(\le \). Every pseudo-Boolean algebra is a distributive lattice.

  4. 4.

    Rasiowa and Sikorski (1963) was translated into Russian by V.A. Yankov and published in 1972.

  5. 5.

    The logic \(L\mathsf{A}\) of a p.-B. algebra is defined in the same way as a logic of the regular model \(\langle \mathsf{A},\{ 1_\mathsf{A}\}\rangle \).

  6. 6.

    Recall that \(P\supseteq A\) is a prime filter on a p.-B. algebra A if it satifies the conditions: a) \(P\ne A\); b) \( (x \& y)\in P\) whenever \(x,y\in P\); c) \((x\vee y)\in P\) iff \(x\in P\) or \(y\in P\).

  7. 7.

    \(A\equiv B\) is an abbreviation for \( (A\supset B) \& (B\supset A)\).

  8. 8.

    \(\alpha \leftrightarrow \beta \) is an abbreviation for \( (\alpha \rightarrow \beta ) \& (\beta \rightarrow \alpha )\) and \(\Diamond \alpha \) for \(\sim \Box \sim \alpha \).

  9. 9.

    Maksimova and Rybakov (1974) use the generally accepted version of Gödel translation such that \(T(p)=\Box p\) for a propositional variable p and

    $$ \begin{aligned} \begin{array}{lll} T(A \& B) &{}=&{} T(A) \& T(B), \quad T(A\supset B) = \Box (T(A)\rightarrow T(B)), \\ T(A\vee B) &{}=&{} T(A)\vee T(B), \quad T(\lnot A) = \Box (\mathord {\sim }T(A)), \end{array} \end{aligned}$$

    where \(A,B\in For_\mathscr {I}\).

  10. 10.

    By non-logical terms we mean elements of the signature in case of first order logic and propositional variables in case of propositional logics.

  11. 11.

    Recall that a p.-B.algebra A is well-connected if \(a\vee b=1\) implies \(a=1\) or \(b=1\) for \(a,b\in \mathsf{A}\).

  12. 12.

    See the previous section for the definition of t.-B. algebra \(\mathscr {S}(\mathsf{A})\) assigned to a p.-B. algebra A and for the definition of characteristics \(\mu _1(\mathsf{Q}_\mathsf{A})\) and \(\mu _2(\mathsf{Q}_\mathsf{A})\) of the representing quasi-ordering for \(\mathsf{A}\).

References

  • Bacsich, P. D. (1975). Amalgamation properties and interpolation theorem for equational theories. Algebra Universalis, 5, 45–55.

    Article  Google Scholar 

  • Blok, W. J. (1976). Varieties of interior algebras, Ph.D. thesis, University of Amsterdam.

    Google Scholar 

  • Chagrov, A., & Zakharyaschev, M. (1997). Modal Logic. Oxford: Clarendon Press.

    Google Scholar 

  • Citkin, A. (2008). A mind of non-countable set of ideas. Logic and Logical Philosophy, 17, 23–39.

    Article  Google Scholar 

  • Craig, W. (1957). Three uses of Herbrand-Gentzen theorem in relating model theory and proof theory. Journal of Symbolic Logic, 22, 269–285.

    Article  Google Scholar 

  • Czermak, J. (1975). Interpolation theorem for some modal logics. In H. E. Rose & J. C. Shepherdson (Eds.), Logic Colloquium’73 (pp. 381–393). Amsterdam: North-Holland.

    Google Scholar 

  • Dummett, M. (1959). A propositional calculus with denumerable matrix. The Journal of Symbolic Logic, 24, 97–106.

    Article  Google Scholar 

  • Dummett, M. A., & Lemmon, E. J. (1959). Modal logics between \(S4\) and \(S5\). Zeitschrift für Mathematische Logik und Grundlagen der Mathematik.

    Google Scholar 

  • Dunn, J. M., & Meyer, R. K. (1971). Algebraic completeness results for Dummett’s LC and its extensions. Zeitschrift für Mathematische Logic und Grundlagen der Mathematik, 17, 225–230.

    Google Scholar 

  • Gabbay, D. M., & Maksimova, L. L. (2005). Interpolation and Definability. Oxford: Clarendon Press.

    Book  Google Scholar 

  • Esakia, L. L. (1976). On modal companions of superintuitionistic logics. In VIIth Soviet Symposium on Logic, Kiev. [On modal companions of superintuitionistic logics].

    Google Scholar 

  • Esakia, L. L., & Meskhi, V Yu. (1974). O pyati ’kriticheskikh’ modalnykh systemakh. In Theory of Logical Inference (Summaries of Reports of the All-Union Symposium, Moscow, 1974). Part I. Moscow. [On five ’critical’ modal systems].

    Google Scholar 

  • Esakia, L. L., & Meskhi, V Yu. (1977). Five critical modal systems. Theoria, 40, 52–60.

    Google Scholar 

  • Gabbay, D. (1971). Semantic proof of the Craig interpolation theorem for intuitionistic logic and its extensions, part I, part II, In R. O. Gandy & C. M. E. Yates (eds.) Logic Colloquium’69 (pp. 391–410)., North-Holland, Amsterdam.

    Google Scholar 

  • Gabbay, D. (1972). Graig’s interpolation theorem for modal logics. In W. Hodges (Ed.), Lecture Notes in Mathematics (pp. 111–127)., Conference in mathematical logic, London 1970 Berlin: Springer.

    Google Scholar 

  • Gerchiu, V Ya., & Kuznetsov, A. V. (1968). O mnogoobraziyakh psevdo-bulevykh algebr, zadannykh tozhdestvami ogranichennoj dliny. In 9th All-Union Algebraic Colloquium, Resume of Communications and Papers (pp. 54–65). Gomel. [On the varieties of pseudo-Boolean algebras, specified by idenities of bounded length].

    Google Scholar 

  • Gödel, K. (1933). Eine interpretation des intuitionistischen aussagenkalkuls. Ergebnisse eines mathematischen Kolloquiums, 4, 39–40. [An interpretation of intuitionistic propositional calculus].

    Google Scholar 

  • Grzegorczyk, A. (1967). Some relational systems and the associated topological spaces. Fundamenta Mathematicae, 60, 223–231.

    Article  Google Scholar 

  • Harrop, R. (1958). On the existence of finite models and decision procedures for propoiional calculi. Proceedings of Cambridge Philosophical Society, 54, 1–13.

    Article  Google Scholar 

  • Hosoi, T. (1967). On the axiomatic method and the algebraic method for dealing with propositional logics. Journal of the Faculty of Science, Iniversity of Tokio, Setion I, 14, 131–169.

    Google Scholar 

  • Hosoi, T. (1967a). On intermediate logics I, Journal of the Faculty of Science, Iniversity of Tokio, Setion I, 14, 293–312.

    Google Scholar 

  • Hosoi, T., & Ono, H. (1970). The intermediate logics of the second slice. Journal of the Faculty of Science, Iniversity of Tokio, Section I, 17, 457–461.

    Google Scholar 

  • Jónsson, B. (1965). Extensions of relational sctructures. In J. W. Addison, L. Henkin, & A. Tarski (Eds.), Theory of Models (pp. 146–157). Amsterdam: North-Holland.

    Google Scholar 

  • Kuznetsov, A. V. (1963). O nerazreshimosti obschikh problem polnoty, razresheniya i ekvivalentnosti dla ischisleniǐ vyskazyvaniǐ. Algebra i logika, 2(4), 47–66. [On non-decidability of general problems of completeness, decidability and equivalency for propositional calculi].

    Google Scholar 

  • Kuznetsov, A. V. (1971). Nekotorye svoǐstva reshetki mnogoobraziǐ psevdo-bulevykh algebr. In 11th All-Union Algebraic Colloquium, Resume of Communications and Papers (pp. 255–256). Kishinev. [Certain properties of the lattice of varieties of pseudo-Boolean algebras].

    Google Scholar 

  • Maksimova, L. L. (1964). O sisteme aksiom ischisleniya strogoǐ implikatsii. Algebra i logika, 3(5), 59–68. [On the system of axioms of the calculus of rigorous implication].

    Google Scholar 

  • Maksimova, L.L. (1968) . Logicheskie ischisleniya strogoǐ implikatsii, Ph.D. thesis, SO AN SSSR, Novosibirsk. [Logical calculi of rigorous implication].

    Google Scholar 

  • Maksimova, L. L. (1972). Predtablichnye superintuicionistskie logiki. Algebra i logika, 11(5), 558–570. [Pretabular superintuitionistic logics].

    Google Scholar 

  • Maksimova, L.L. (1975). Predtablichnye rasshireniya sistemy Lewisa S4, Algebra i logika, 14(1), 28–55. [Pretabular extensions of Lewis’ S4].

    Google Scholar 

  • Maksimova, L. L. (1977). Teorema Kreǐga v supserintuicionistskikh logikakh i amalgamiruemyje mnogoobrazja psevdobulevykh algebr. Algebra i Logika, 16(6), 643–681. [Craig’s theorem in superintuitionistic logics and amalgamable varieties of pseudo-Boolean algebras].

    Google Scholar 

  • Maksimova, L. L. (1979). Ob odnoj klassifikacii modalnylh logik, Algebra i Logika, 18(3), 328–340. [On one classification of modal logics].

    Google Scholar 

  • Maksimova, L. L. (1979a). Interpolacionnye teoremy v modalnykh logikalh i amalgamiruemye mnogoobrazija topobulevykh algebr, Algebra i Logika, 18(5), 556–586. [Interpolation theorems in modal logics and amalgamable varieties of topoboolean algebras].

    Google Scholar 

  • Maksimova, L. L. & Rybakov, V. V. (1974). O reshetke normalnykh modalnykh logik, Algebra i logika, 13(2), 188–216. [On the lattice of normal modal logics].

    Google Scholar 

  • Maltsev, A. I. (1936). Untersuchungen aus dem Gebiete der mathematischen Logik, Mathematicheskiǐ Sbornik, 1(3), 323–335. [Investigations from the field of mathematical logic].

    Google Scholar 

  • Maltsev, A. I. (1958). O gomomorfizmakh konechnykh grupp, Ivanovskiǐ Gosudarstvennyǐ Pedagogicheskiǐ Institut. Uchenye Zapiski 18, 49–60. [On homomorphisms of finite groups].

    Google Scholar 

  • McKay, C. G. (1967). On finite logics. Indagationes Mathematicae, 29, 363–365.

    Article  Google Scholar 

  • McKinsey, J. C. C., & Tarski, A. (1948). Some theorems about the sentential calculi of Lewis and Heyting. Journal of Symbolic Logic, 13, 1–15.

    Article  Google Scholar 

  • Rasiowa, H. (1972). The craig interpolation theorem for \(m\)-valued predicate calculi. Bulletin de là Académie Polonaise des Science, 20, 341–346.

    Google Scholar 

  • Rasiowa, H., & Sikorski, R. (1963). Monografie Matematyczne. The mathematics of metamathematics. Warszawa.

    Google Scholar 

  • Schütte, K. (1962). Der interpolationsatz der intuitionistischen predikatenlogik, Mathematische Annalen, 148, 192–200. [Interpolation theorem of intuitionistic predicate logic].

    Google Scholar 

  • Scroggs, J. (1951). Extensions of S5. Journal of Symbolic Logic, 16, 112–120.

    Article  Google Scholar 

Download references

Acknowledgements

As a customer of the seminar “Non-standard logics” in Novosibirsk State University I am gratefull to Prof. Maksimova for creating and supporting this form of intellectual communication, which caused, in particular, the change of my field of scientific interests from the classical computability theory to non-classical logics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Odintsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Odintsov, S. (2018). Maksimova, Relevance and the Study of Lattices of Non-classical Logics. In: Odintsov, S. (eds) Larisa Maksimova on Implication, Interpolation, and Definability. Outstanding Contributions to Logic, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-69917-2_1

Download citation

Publish with us

Policies and ethics