Advertisement

Distribution of Voice Messages in Crisis or Emergency Situations

  • Filip Rezac
  • Miroslav Voznak
  • Jaromir Tovarek
  • Jerry Chun-Wei Lin
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 785)

Abstract

The system which description and realization is presented in this article is intended to expand existing solutions to the emergency services for the distribution of voice messages with pre-recorded content in order to inform target participants about critical events in their surroundings using multimedia tools, based on Session Initiation Protocol. The transmission of information via voice channel has, over other forms of distributed notification, the advantage that the target user is forced to pick up the call and listen to the message - so the information cannot be ignored or overlooked. Another benefit is more accurate addressing of target groups, and ultimately it can ensure the re-delivery of messages to users who have not heard them. The authors present their own method of sending pre-recorded messages, which are then tested in terms of the definition of the performance capabilities of the distribution network. Practical implementation thereafter demonstrates the advantages and use of the proposed solutions in a simulated environment.

Keywords

Distribution of voice messaging Voice over IP notification Crisis situation Network congestion model Performance testing 

Notes

Acknowledgements

This research was funded by the grant SGS reg. no. SP2017/174 conducted at VSB - Technical University of Ostrava, Czech Republic.

References

  1. 1.
    The United Nations, The World Bank: Natural hazards, unnatural disasters: the economics of effective prevention. http://www.alnap.org/pool/files/nhud-report-full.pdf. Accessed 19 May 2017
  2. 2.
    3GPP TS 23.041: Technical realization of Cell Broadcast Service (CBS). http://www.etsi.org/dliver/etsi_ts/123000_123099/123041/14.00.00_60/ts_123041v140000p.pdf. Accessed 19 May 2017
  3. 3.
    3GPP TS 22.268: Public Warning System (PWS) requirements. http://www.etsi.org/de-liver/etsi_ts/122200_122299/122268/13.00.00_60/ts_122268v130000p.pdf. Accessed 19 May 2017
  4. 4.
    Segui Boronat, F., Cebollada Guerri, J.C., Mauri Lloret, J.: An RTP/RTCP based approach for multimedia group and inter-stream synchronization. Multimedia Tools Appl. 40(2), 285–319 (2008). Springer, HeidelbergCrossRefGoogle Scholar
  5. 5.
    Davids, C., Gurbani, V., Poretsky, S.: RFC 7502: Methodology for benchmarking session initiation protocol (SIP) devices: basic session setup and registration. https://tools.ietf.org/html/rfc7502. Accessed 19 May 2017
  6. 6.
    Husic, J., et al.: RFC 6076: Basic telephony SIP end-to-end performance metrics. https://tools.ietf.org/html/rfc6076. Accessed 19 May 2017
  7. 7.
    Voznak, M., Rozhon, J.: Approach to stress tests in SIP environment based on marginal analysis. Telecommun. Syst. 52(3), 1583–1593 (2013). Springer, HeidelbergCrossRefGoogle Scholar
  8. 8.
    Stuckmann, P.: Quality of service management in GPRS-based radio access networks. Telecommun. Syst. 19(3), 515–546 (2002). Springer, HeidelbergCrossRefGoogle Scholar
  9. 9.
    Bhebhe, L., Parkkali, R.: VoIP performance over HSPA with different VoIP clients. Wireless Pers. Commun. 58(3), 613–626 (2011). Springer, HeidelbergCrossRefGoogle Scholar
  10. 10.
    Muhleisen, M., Walke, B., Timm-Giel, A.: Uplink VoIP capacity of 3GPP LTE under power control and semi-persistent scheduling. In: Proceedings of IEEE ATNAC 2013, pp. 69–76. IEEE, Christchurch (2013)Google Scholar
  11. 11.
    Yang, S.-H., Yang, S.-R., Kao, C.-C.: Analyzing VoIP capacity with delay guarantee for integrated HSPA networks. In: Ślęzak, D., Kim, T., Chang, A.C.-C., Vasilakos, T., Li, M.C., Sakurai, K. (eds.) FGCN 2009. CCIS, vol. 56, pp. 316–323. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-10844-0_38 CrossRefGoogle Scholar
  12. 12.
    Pratap, A., Pati, H.K.: Capacity estimation for cellular LTE using AMR codec with semi-persistent scheduling. In: Jain, L.C., Patnaik, S., Ichalkaranje, N. (eds.) Intelligent Computing, Communication and Devices. AISC, vol. 308, pp. 725–736. Springer, New Delhi (2015). doi: 10.1007/978-81-322-2012-1_78 CrossRefGoogle Scholar
  13. 13.
    ITU-T Rec. G.114: International telephone connections and circuits – General recommendations on the transmission quality for an entire international telephone connection. https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-G.114-200305-I!!PDF-E&type=items. Accessed 19 May 2017
  14. 14.
    Minh, Q.T., et al.: On-the-fly establishment of multi hop wireless access networks for disaster recovery. Commun. Mag. 52(10), 60–66 (2014). IEEECrossRefGoogle Scholar
  15. 15.
    Leu, J.S., Hsieh, H.-C., Chen, Y.-C.: Inexpensive high availability solutions for the SIP - based VoIP service. Multimedia Tools Appl. 53(1), 285–301 (2014). Springer, HeidelbergCrossRefGoogle Scholar
  16. 16.
    Tomala, K., Rozhon, J., Rezac, F., Vychodil, J., Voznak, M., Zdralek, J.: Interactive VoiceXML module into SIP-based warning distribution system. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2011. CCIS, vol. 149, pp. 338–344. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21512-4_41 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Filip Rezac
    • 1
  • Miroslav Voznak
    • 1
  • Jaromir Tovarek
    • 1
  • Jerry Chun-Wei Lin
    • 2
  1. 1.VSB - Technical University of OstravaOstravaCzech Republic
  2. 2.School of Computer Science and TechnologyHarbin Institute of Technology Shenzhen Graduate SchoolShenzhenChina

Personalised recommendations