Advertisement

QSIP: A Quantum Key Distribution Signaling Protocol

  • Miralem Mehic
  • Almir Maric
  • Miroslav Voznak
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 785)

Abstract

The rapid development of quantum equipment has led to increased interest in the application of Quantum Key Distribution (QKD) in everyday life. One of the questions is the establishment of a QKD session, namely the procedure for negotiating session parameters that is solved using a signaling protocol. In this paper, we analyze the existing signaling protocols and their limited application in a QKD network. We present a new QKD signaling protocol (QSIP) that aims to establish a session, modify the parameters of the established session and tear down the session. Additionally, QSIP is expanded to carry values that can be used to calculate average delay and perceive the state of the public channel of QKD link.

Keywords

Quantum Key Distribution (QKD) Signaling Networks 

Notes

Acknowledgments

The research received a financial support from the SGS grant No. SP2017/174, VSB - Technical University of Ostrava, Czech Republic.

References

  1. 1.
    Maurer, U.M.: Secret key agreement by public discussion from common information. IEEE Trans. Inf. Theor. 39(3), 733–742 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, IEEE Computational Society Press, pp. 124–134 (1994)Google Scholar
  3. 3.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, vol. 175, New York (1984)Google Scholar
  4. 4.
    Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48(3), 351–406 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)CrossRefGoogle Scholar
  7. 7.
    Yin, J., Cao, Y., Li, Y.H., Liao, S.K., Zhang, L., Ren, J.G., Al, W.Q.C., Liu, W.Y., Bo Li, H.D., Li, G.B., Lu, Q.M., Gong, Y.H., Xu, Y., Li, S.L., Li, F.Z., Yin, Y.Y., Jiang, Z.Q., Li, M., Jia, J.J., Ge Ren, D.H., Zhou, Y.L., Zhang, X.X., Wang, N., Chang, X., Zhu, Z.C., Liu, N.L., Chen, Y.A., Lu, C.Y., Shu, R., Peng, C.Z., Wang, J.Y., Pan, J.W.: Satellite-based entanglement distribution over 1200 kilometers. Science 356(6343), 1140–1144 (2017)CrossRefGoogle Scholar
  8. 8.
    Wang, S., Chen, W., Yin, Z.Q., Li, H.W., He, D.Y., Li, Y.H., Zhou, Z., Song, X.T., Li, F.Y., Wang, D., Chen, H., Han, Y.G., Huang, J.Z., Guo, J.F., Hao, P.L., Li, M., Zhang, C.M., Liu, D., Liang, W.Y., Miao, C.H., Wu, P., Guo, G.C., Han, Z.F.: Field and long-term demonstration of a wide area quantum key distribution network. Opt. Express 22(18), 21739–21756 (2014)CrossRefGoogle Scholar
  9. 9.
    Sasaki, M., Fujiwara, M., Ishizuka, H., Klaus, W., Wakui, K., Takeoka, M., Miki, S.: Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19, 10387–10409 (2011)CrossRefGoogle Scholar
  10. 10.
    Xu, F.X., Chen, W., Wang, S., Yin, Z.Q., Zhang, Y., Liu, Y., Zhou, Z., Zhao, Y.B., Li, H.W., Liu, D., Han, Z.F., Guo, G.C.: Field experiment on a robust hierarchical metropolitan quantum cryptography network. Chin. Sci. Bull. 54(17), 2991–2997 (2009)CrossRefGoogle Scholar
  11. 11.
    Elliott, C., Yeh, H.: DARPA Quantum Network Testbed. Technical Report, BBN Technologies Cambridge, New York, USA, BBN Technologies Cambridge, New York, USA, July 2007Google Scholar
  12. 12.
    Alleaume, R., Bouda, J., Branciard, C., Debuisschert, T., Dianati, M., Gisin, N., Godfrey, M., Grangier, P., Langer, T., Leverrier, A., Lutkenhaus, N., Painchault, P., Peev, M., Poppe, A., Pornin, T., Rarity, J., Renner, R., Ribordy, G., Riguidel, M., Salvail, L., Shields, A., Weinfurter, H., Zeilinger, A.: SECOQC white paper on quantum key distribution and cryptography. arXiv preprint quant-ph/0701168 28 (2007)Google Scholar
  13. 13.
    Alleaume, R., Branciard, C., Bouda, J., Debuisschert, T., Dianati, M., Gisin, N., Godfrey, M., Grangier, P., Länger, T., Lütkenhaus, N., Monyk, C., Painchault, P., Peev, M., Poppe, A., Pornin, T., Rarity, J., Renner, R., Ribordy, G., Riguidel, M., Salvail, L., Shields, A., Weinfurter, H., Zeilinger, A.: Using quantum key distribution for cryptographic purposes: a survey. Theor. Comput. Sci. 560(P1), 62–81 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Salvail, L., Peev, M., Diamanti, E., Alléaume, R., Lütkenhaus, N., Länger, T.: Security of trusted repeater quantum key distribution networks. J. Comput. Secur. 18(1), 61–87 (2010)CrossRefGoogle Scholar
  15. 15.
    Mehic, M., Niemiec, M., Voznak, M.: Calculation of the key length for quantum key distribution. Elektronika ir Elektrotechnika 21(6), 81–85 (2015)CrossRefGoogle Scholar
  16. 16.
    Mehic, M., Komosny, D., Mauhart, O., Voznak, M., Rozhon, J.: Impact of packet size variation in overlay quantum key distribution network. In: 2016 XI International Symposium on Telecommunications (BIHTEL), Sarajevo, Bosnia and Herzegovina. IEEE pp. 1–6, October 2016Google Scholar
  17. 17.
    Kollmitzer, C., Pivk, M.: Applied Quantum Cryptography. LNP, vol. 797. Springer Science & Business Media, Hiedelberg (2010)zbMATHGoogle Scholar
  18. 18.
    Peev, M., Pacher, C., Alléaume, R., Barreiro, C., Bouda, J., Boxleitner, W., Debuisschert, T., Diamanti, E., Dianati, M., Dynes, J.F., Fasel, S., Fossier, S., Fürst, M., Gautier, J.D., Gay, O., Gisin, N., Grangier, P., Happe, A., Hasani, Y., Hentschel, M., Hübel, H., Humer, G., Länger, T., Legré, M., Lieger, R., Lodewyck, J., Lorünser, T., Lütkenhaus, N., Marhold, A., Matyus, T., Maurhart, O., Monat, L., Nauerth, S., Page, J.B., Poppe, A., Querasser, E., Ribordy, G., Robyr, S., Salvail, L., Sharpe, A.W., Shields, A.J., Stucki, D., Suda, M., Tamas, C., Themel, T., Thew, R.T., Thoma, Y., Treiber, A., Trinkler, P., Tualle-Brouri, R., Vannel, F., Walenta, N., Weier, H., Weinfurter, H., Wimberger, I., Yuan, Z.L., Zbinden, H., Zeilinger, A.: The SECOQC quantum key distribution network in Vienna. New J. Phys. 11(7), 075001 (2009)CrossRefGoogle Scholar
  19. 19.
    Zhang, L., Deering, S., Estrin, D.: RSVP: A new resource reservation protocol. Network 7(5), 8–18 (1993)Google Scholar
  20. 20.
    Sun, J.Y., Lang, J., Miao, C., Yang, N., Wang, S.: A digital watermarking algorithm based on hyperchaos and discrete fractional fourier transform. In: 2012 5th International Congress on Image and Signal Processing, pp. 552–556. IEEE, October 2012Google Scholar
  21. 21.
    Cheng, X., Sun, Y., Ji, Y.: A QoS-supported scheme for quantum key distribution. In: 2011 International Conference on Advanced Intelligence and Awareness Internet (AIAI 2011), Number 2009, pp. 220–224. IET (2011)Google Scholar
  22. 22.
    Mehic, M., Maurhart, O., Rass, S., Komosny, D., Rezac, F., Voznak, M.: Analysis of the public channel of quantum key distribution link. IEEE J. Quantum Electron. 53(5), 1–8 (2017)CrossRefGoogle Scholar
  23. 23.
    Dianati, M., Alleaume, R., Gagnaire, M., Shen, X.S.: Architecture and protocols of the future European quantum key distribution network. Secur. Commun. Netw. 1(1), 57–74 (2008)CrossRefGoogle Scholar
  24. 24.
    Hannes, T., Richard, G.: RSVP Security Properties. Technical report, RFC 4230Google Scholar
  25. 25.
    Chen, S., Nahrstedt, K.: An overview of quality-of-service routing for the next generation high-speed networks problems and solutions. IEEE Netw. 12(6), 64–79 (1998)CrossRefGoogle Scholar
  26. 26.
    Sarkar, K., Basavaraju, T., Puttamadappa, C.: Ad Hoc Mobile Wireless Networks. CRC Press, Boca Raton (2008)Google Scholar
  27. 27.
    Lee, S.B., Ahn, G.S., Campbell, A.: Improving UDP and TCP performance in mobile ad hoc networks with INSIGNIA. IEEE Commun. Mag. 39(6), 156–165 (2001)CrossRefGoogle Scholar
  28. 28.
    Kui, W., Janelle, H.: Qos support in mobile and ad-hoc networks. Crossing Boundaries GSA J. Univ. Alberta 1(1), 106 (1992)Google Scholar
  29. 29.
    Chlamtac, I., Conti, M., Liu, J.J.N.: Mobile ad hoc networking: imperatives and challenges. Ad Hoc Netw. 1, 13–64 (2003)CrossRefGoogle Scholar
  30. 30.
    Seah, W., Lo, A., Chua, K.: A flexible quality of service model for mobile ad-hoc networks. In: 2000 IEEE 51st Vehicular Technology Conference Proceedings VTC2000-Spring, (Cat. No.00CH37026), vol. 1, pp. 445–449. IEEE (2000)Google Scholar
  31. 31.
    Bennett, C., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptol. 5(1), 3–28 (1992)CrossRefzbMATHGoogle Scholar
  32. 32.
    Mehic, M., Partila, P., Tovarek, J., Voznak, M.: Calculation of key reduction for B92 QKD protocol. In: Donkor, E., Pirich, A.R., Hayduk, M., eds.: SPIE Sensing Technology + Applications, p. 95001J. International Society for Optics and Photonics, May 2015Google Scholar
  33. 33.
    Elliott, C.: Building the quantum network. New J. Phys. 4, 346 (2002)CrossRefGoogle Scholar
  34. 34.
    Marhoefer, M., Wimberger, I., Poppe, A.: Applicability of quantum cryptography for securing mobile communication networks. In: Emerging Trends in Information and Communication Security, Long-Term and Dynamical Aspects of Information Security, pp. 97–111 (2007)Google Scholar
  35. 35.
    Konig, S., Rass, S.: On the transmission capacity of quantum networks. Int. J. Adv. Comput. Sci. Appl. 2(11), 9–16 (2011)Google Scholar
  36. 36.
    Franklin, M., Wright, R.N.: Secure communication in minimal connectivity models. J. Cryptol. 13(1), 9–30 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Desmedt, Y., Wang, Y.: Perfectly secure message transmission revisited. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 502–517. Springer, Heidelberg (2002). doi: 10.1007/3-540-46035-7_33 CrossRefGoogle Scholar
  38. 38.
    Couto, D.S.J.D., Aguayo, D., Bicket, J., Morris, R.: A high-throughput path metric for multi-hop wireless routing. Wirel. Netw. 11(4), 419–434 (2005)CrossRefGoogle Scholar
  39. 39.
    Javaid, N., Bibi, A., Djouani, K.: Interference and bandwidth adjusted ETX in wireless multi-hop networks. In: 2010 IEEE Globecom Workshops, pp. 1638–1643. IEEE, December 2010Google Scholar
  40. 40.
    Ashraf, U., Abdellatif, S., Juanole, G.: An Interference and link-quality aware routing metric for wireless mesh networks. In: 2008 IEEE 68th Vehicular Technology Conference, pp. 1–5. IEEE, September 2008Google Scholar
  41. 41.
    Mehic, M., Fazio, P., Voznak, M., Partila, P., Komosny, D., Tovarek, J., Chmelikova, Z.: On using multiple routing metrics with destination sequenced distance vector protocol for MultiHop wireless ad hoc networks, 98480F. International Society for Optics and Photonics, May 2016Google Scholar
  42. 42.
    Länger, T., Lenhart, G.: Standardization of quantum key distribution and the ETSI standardization initiative ISG-QKD. New J. Phys. 11(5), 055051 (2009)CrossRefGoogle Scholar
  43. 43.
    Lenhart, G.: QKD standardization at ETSI. In: Qcw 2010, vol. 57, pp. 50–57 (2012)Google Scholar
  44. 44.
    Maurhart, O., Pacher, C., Happe, A., Lor, T., Tamas, C., Poppe, A., Peev, M.: New release of an open source QKD software : design and implementation of new algorithms, modularization and integration with IPSec. In: Qcrypt 2013 (2013)Google Scholar
  45. 45.
    Mehic, M., Maurhart, O., Rass, S., Voznak, M.: Implementation of quantum key distribution network simulation module in the network simulator NS-3. Quantum Inf. Process. 16(10), 253 (2017)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of TelecommunicationsVSB-Technical University of OstravaOstrava-PorubaCzech Republic
  2. 2.Faculty of Electrical EngineeringUniversity of SarajevoSarajevoBosnia and Herzegovina

Personalised recommendations