Advertisement

Contextual Keys

  • Ziheng Wei
  • Sebastian Link
  • Jiamou Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10650)

Abstract

Much work has been done on extending the relational model of data to encompass incomplete information. In particular, a plethora of research has examined the semantics of integrity constraints in the presence of null markers. We propose a new approach whose semantics relies exclusively on fragments of complete data within an incomplete relation. For this purpose, we introduce the class of contextual keys. Users can specify the context of a key as a set of attributes that selects the sub-relation of tuples with no null marker occurrences on the attributes of the context. Then the key uniquely identifies the tuples within the sub-relation. The standard notion of a key over complete relations is the special case of a contextual key whose context consists of all attributes. SQL unique constraints form the special case of a contextual key whose context coincides with the set of key attributes. We establish structural and computational characterizations of the associated implication problem, and of their Armstrong databases. The computation of Armstrong databases has been implemented in a tool, and experiments provide insight into the actual run-time behavior of the algorithms that complement our detailed computational complexity analysis.

Keywords

Armstrong relation Data and knowledge intelligence Decision support Incomplete data Key Reasoning Requirements analysis 

References

  1. 1.
    Bisbal, J., Grimson, J.: Consistent database sampling as a database prototyping approach. J. Softw. Maint. Evol.: Res. Pract. 14(6), 447–459 (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Brown, P., Ganesan, J., Köhler, H., Link, S.: Keys with probabilistic intervals. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 164–179. Springer, Cham (2016). doi: 10.1007/978-3-319-46397-1_13 CrossRefGoogle Scholar
  3. 3.
    Brown, P., Link, S.: Probabilistic keys. IEEE Trans. Knowl. Data Eng. 29(3), 670–682 (2017)CrossRefGoogle Scholar
  4. 4.
    Codd, E.F.: Missing information (applicable and inapplicable) in relational databases. ACM SIGMOD Rec. 15(4), 53–53 (1986)CrossRefGoogle Scholar
  5. 5.
    Demetrovics, J., Katona, G.O.H., Miklós, D., Seleznjev, O., Thalheim, B.: Asymptotic properties of keys and functional dependencies in random databases. Theor. Comput. Sci. 190(2), 151–166 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Fagin, R.: Horn clauses and database dependencies. J. ACM (JACM) 29(4), 952–985 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Gottlob, G., Zicari, R.: Closed world databases opened through null values. VLDB 88, 50–61 (1988)Google Scholar
  8. 8.
    Grant, J.: Null values in a relational data base. Inf. Process. Lett. 6(5), 156–157 (1977)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hartmann, S., Leck, U., Link, S.: On Codd families of keys over incomplete relations. Comput. J. 54(7), 1166–1180 (2011)CrossRefGoogle Scholar
  10. 10.
    Hartmann, S., Link, S.: Unlocking keys for XML trees. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 104–118. Springer, Heidelberg (2006). doi: 10.1007/11965893_8 CrossRefGoogle Scholar
  11. 11.
    Hartmann, S., Link, S.: Efficient reasoning about a robust XML key fragment. ACM Trans. Database Syst. 34(2), 10:1–10:33 (2009)CrossRefGoogle Scholar
  12. 12.
    Hartmann, S., Link, S.: Expressive, yet tractable XML keys. In: Kersten, M.L., Novikov, B., Teubner, J., Polutin, V., Manegold, S. (eds.) EDBT 2009, pp. 357–367. ACM, New York (2009)Google Scholar
  13. 13.
    Khizder, V.L., Weddell, G.E.: Reasoning about uniqueness constraints in object relational databases. IEEE Trans. Knowl. Data Eng. 15(5), 1295–1306 (2003)CrossRefGoogle Scholar
  14. 14.
    Koehler, H., Leck, U., Link, S., Prade, H.: Logical foundations of possibilistic keys. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 181–195. Springer, Cham (2014). doi: 10.1007/978-3-319-11558-0_13 Google Scholar
  15. 15.
    Köhler, H., Leck, U., Link, S., Zhou, X.: Possible and certain keys for SQL. VLDB J. 25(4), 571–596 (2016)CrossRefGoogle Scholar
  16. 16.
    Köhler, H., Link, S.: SQL schema design: foundations, normal forms, and normalization. In: Özcan, F., Koutrika, G., Madden, S. (eds.) Proceedings of the 2016 International Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, 26 June–01 July 2016, pp. 267–279. ACM (2016)Google Scholar
  17. 17.
    Köhler, H., Link, S., Zhou, X.: Possible and certain SQL keys. PVLDB 8(11), 1118–1129 (2015)Google Scholar
  18. 18.
    Köhler, H., Link, S., Zhou, X.: Discovering meaningful certain keys from incomplete and inconsistent relations. IEEE Data Eng. Bull. 39(2), 21–37 (2016)Google Scholar
  19. 19.
    Langeveldt, W.D., Link, S.: Empirical evidence for the usefulness of Armstrong relations in the acquisition of meaningful functional dependencies. Inf. Syst. 35(3), 352–374 (2010)CrossRefGoogle Scholar
  20. 20.
    Le, V.B.T., Link, S., Ferrarotti, F.: Empirical evidence for the usefulness of Armstrong tables in the acquisition of semantically meaningful SQL constraints. Data Knowl. Eng. 98, 74–103 (2015)CrossRefGoogle Scholar
  21. 21.
    Levene, M., Loizou, G.: Axiomatisation of functional dependencies in incomplete relations. Theor. Comput. Sci. 206(1), 283–300 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Levene, M., Loizou, G.: A generalisation of entity and referential integrity in relational databases. RAIRO-Theor. Inf. Appl. 35(2), 113–127 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Levene, M., Loizou, G.: A Guided Tour of Relational Databases and Beyond. Springer Science & Business Media, Berlin (2012)zbMATHGoogle Scholar
  24. 24.
    Link, S., Prade, H.: Relational database schema design for uncertain data. In: Mukhopadhyay, S., Zhai, C., Bertino, E., Crestani, F., Mostafa, J., Tang, J., Si, L., Zhou, X., Chang, Y., Li, Y., Sondhi, P. (eds.) Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, CIKM 2016, Indianapolis, IN, USA, 24–28 October 2016, pp. 1211–1220. ACM (2016)Google Scholar
  25. 25.
    Makinouchi, A.: A consideration on normal form of not-necessarily-normalized relation in the relational data model. In: Proceedings of the Third International Conference on Very Large Data Bases, 6–8 October 1977, Tokyo, Japan, pp. 447–453 (1977)Google Scholar
  26. 26.
    Mannila, H., Raihä, K.: Design by example: an application of Armstrong relations. J. Comput. Syst. Sci. 33(2), 126–141 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Thalheim, B.: On semantic issues connected with keys in relational databases permitting null values. Elektron. Informationsverarbeitung und Kybern. 25(1/2), 11–20 (1989)MathSciNetGoogle Scholar
  28. 28.
    Thalheim, B.: Dependencies in Relational Databases. Teubner, Leipzig (1991)CrossRefzbMATHGoogle Scholar
  29. 29.
    Thalheim, B.: The number of keys in relational and nested relational databases. Discrete Appl. Math. 40(2), 265–282 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Wei, Z., Link, S., Liu, J.: Contextual keys. Technical report 508, (2017). www.cs.auckland.ac.nz/research/groups/CDMTCS/researchreports/
  31. 31.
    Zaniolo, C.: Database relations with null values. J. Comput. Syst. Sci. 28(1), 142–166 (1984)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations