Skip to main content

Future Water Requirements for Prevailing Cropping Pattern

  • Chapter
  • First Online:
Cropping Pattern Modification to Overcome Abiotic Stresses

Part of the book series: SpringerBriefs in Water Science and Technology ((BRIEFSWATER))

  • 411 Accesses

Abstract

The objective of this chapter was to calculate the values of water consumptive use for the studied crops in the prevailing cropping pattern in 2030 under the effect of climate change in the five agro-climatic zones in Egypt. The projected values of soil temperature on the level of each agro-climatic zone in 2030 revealed that there will be an increasing trend in its value in 2030, compared to its counterpart values in 2015. The highest differences will occur in the summer season from May to September. Whereas, in the winter season, there will be small differences between soil temperature in 2015 and 2030 from September to December, then the difference becomes higher from January to April. Furthermore, soil moisture content in the layer of 0–10 cm in 2030 will be reduced to the degree that it will have the same value in the winter as the summer due to increase in soil evaporation, which will reduce soil moisture content to a very low level. These results were true for the five agro-climatic zones in Egypt. This, in turn, can result in increased water requirements for cultivated crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abtew W, Melesse A (2013) Climate change and evapotranspiration. In Evaporation and evapotranspiration: measurements and estimations, Springer Science Business Media Dordrecht. doi:10.1007/978-94-007-4737-113

  • Attaher S, Medany M, AbdelAziz AA, El-Gendi A (2006) Irrigation-water demands under current and future climate conditions in Egypt. The 14th Annual Conference of the Misr Society of Agricultural. Engineering, pp 1051–1063

    Google Scholar 

  • Calanca P, Roesch A, Jasper K, Wild M (2006) Global warming and the summertime evapotranspiration regime of the Alpine region. Clim Change 79:65–78. doi:10.1007/s10584-006-9103-9

    Article  CAS  Google Scholar 

  • Döll P (2002) Impact of climate change and variability on irrigation requirements: a global perspective. Clim Change 54:269–293

    Article  Google Scholar 

  • Eid H (2001) Climate change studies on Egyptian Agriculture. Soils, Water and Environment research institute SWERI ARC, Ministry of Agriculture, Giza, Egypt

    Google Scholar 

  • Fujino J, Nair R, Kainuma M, Masui T, Matsuoka Y (2006) Multi-gas mitigation analysis on stabilization scenarios using AIM global model. Multi-gas mitigation and climate policy. Energy J Spec 27:343–353

    Google Scholar 

  • García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM, Lasanta–Martínez T, Beguería S (2011) Mediterranean water resources in a global change scenario. Earth-Sci Rev 105(3–4):121–139. doi:10.1016/j.earscirev.2011.01.006

  • Hijioka Y, Matsuoka Y, Nishimoto H, Masui M, Kainuma M (2008) Global GHG emissions scenarios under GHG concentration stabilization targets. J Glob Environ Eng 13:97–108

    Google Scholar 

  • Holden N, Brereton A (2003) Potential impacts of climate change on maize production and the introduction of soybean in Ireland. Irish J Agric Food Res 42:1–15

    Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Climate change. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Karmakar R, Das I, Dutta D, Rakshit A (2016) Potential effects of climate change on soil properties: a review. Sci Int 4(2):51–73

    Article  Google Scholar 

  • Khalil AA (2013) Effect of climate change on evapotranspiration in Egypt. Researcher 51:7–12

    Google Scholar 

  • Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. Adv Agron 77:293–368

    Article  Google Scholar 

  • Lopez-Moreno JI, Beniston M (2009) Daily precipitation intensity projected for the 21st century: seasonal changes over the Pyrenees. Theoret Appl Climatol 95:375–384. doi:10.1007/s00704-008-0015-7

    Article  Google Scholar 

  • Morsy M (2015) Use of regional climate and crop simulation models to predict wheat and maize productivity and their adaptation under climate change. Ph.D. thesis. Faculty of Science Al-Azhar University

    Google Scholar 

  • Onol B, Semazzi FHM, Unal YS, Dalfes HN (2006) Regional climatic impacts of global warming over the eastern mediterranean. International Conference on Climate Change and the Middle East Past, Present and Future, pp 20–23 November 2006, Istanbul Technical University, Turkey

    Google Scholar 

  • Ouda SA, Khalil F, El Afendi G, Abd El-Hafez SA (2011) Prediction of total water requirements for agriculture in the Arab world under climate change. Proceeding of the 15th International Conference on Water Technology, Egypt

    Google Scholar 

  • Ouda S, Noreldin T (2017) Evapotranspiration data to determine agro-climatic zones in Egypt. J Water Land Dev 32(I–III):79–86

    Google Scholar 

  • Ouda S, Noreldin T, Hosny M (2016) Evapotranspiration under changing climate. In: Major crops and water scarcity in Egypt. Springer Publishing House, pp 1–22

    Google Scholar 

  • Ren J, Shen Z, Yang J, Zhao J, Yin J (2014) Effects of temperature and density on hydraulic conductivity of silty clay under infiltration of low-temperature water. Arab J Sci Eng 39:461–466. doi:10.1007/s13369-013-0849-x

  • Rustad LE, Huntington TG, Boone RD (2000) Controls on soil respiration: implications for climate change. Biogeochemistry 48:1–6

    Article  Google Scholar 

  • Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci Rev 99(3–4):125–161

    Article  CAS  Google Scholar 

  • Shahid S (2011) Impact of climate change on irrigation water demand of dry season boro rice in Northwest Bangladesh. Clim Change 105:433–453. http://dx.doi.org/10.1007/s10584-010-9895-5

  • Snyder RL, Orang M, Bali K, Eching S (2004) Basic Irrigation Scheduling (BIS). http://www.waterplan.water.ca.gov/landwateruse/wateruse/Ag/CUP/Californi/Climate_Data_010804.xls

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 996

    Google Scholar 

  • Zohry AA, Ouda S (2016a) Crops intensification to face climate induced water scarcity in Nile Delta region. In: Management of climate induced drought and water scarcity in Egypt: Unconventional Solutions. Springer Publishing House

    Google Scholar 

  • Zohry AA, Ouda S (2016b) Upper Egypt: Management of high water consumption crops by intensification. In: Management of climate induced drought and water scarcity in Egypt: Unconventional Solutions. Springer Publishing House

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samiha A. H. Ouda .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Ouda, S.A.H., Morsy, M. (2018). Future Water Requirements for Prevailing Cropping Pattern. In: Cropping Pattern Modification to Overcome Abiotic Stresses . SpringerBriefs in Water Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-69880-9_7

Download citation

Publish with us

Policies and ethics