Advertisement

Optimization of Home Energy Management System Through Application of Tabu Search

  • Sundas Shafiq
  • Iqra Fatima
  • Samia Abid
  • Sikandar Asif
  • Sajeeha Ansar
  • Zain Ul Abideen
  • Nadeem Javaid
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 13)

Abstract

In the past few years, a number of optimization techniques have been designed for Home Energy Management System (HEMS). In this paper, we evaluated the performance of two heuristic algorithms, i.e., Harmony Search Algorithm (HSA) and Tabu Search (TS) for optimization in residential area. These algorithms are used for efficient scheduling of Smart Appliances (SA) in Smart Homes (SH). Evaluated results show that TS performed better than HSA in achieving our defined goals of cost reduction, improving User Comfort (UC) level and minimization of Peak to Average Ratio (PAR). However, there remains a trade-off between electricity cost and waiting time.

Keywords

Smart grid Demand side management Heuristic techniques Tabu search Harmony search algorithm 

References

  1. 1.
    Rahim, S., Javaid, N., Ahmad, A., Khan, S.A., Khan, Z.A., Alrajeh, N., Qasim, U.: Exploiting heuristic algorithms to efficiently utilize energy management controllers with renewable energy sources. Energy Build. 129, 452–470 (2016)CrossRefGoogle Scholar
  2. 2.
    Javaid, N., Javaid, S., Abdul, W., Ahmed, I., Almogren, A., Alamri, A., Niaz, I.A.: A hybrid genetic wind driven heuristic optimization algorithm for demand side management in smart grid. Energies 10(3), 319 (2017)CrossRefGoogle Scholar
  3. 3.
    Zhao, Z., Lee, W.C., Shin, Y., Song, K.B.: An optimal power scheduling method for demand response in home energy management system. IEEE Trans. Smart Grid 4(3), 1391–1400 (2013)CrossRefGoogle Scholar
  4. 4.
    Ma, K., Yao, T., Yang, J., Guan, X.: Residential power scheduling for demand response in smart grid. Int. J. Electr. Power Energy Syst. 78, 320–325 (2016)CrossRefGoogle Scholar
  5. 5.
    Zhang, D., Evangelisti, S., Lettieri, P., Papageorgiou, L.G.: Economic and environmental scheduling of smart homes with microgrid: DER operation and electrical tasks. Energy Convers. Manag. 110, 113–124 (2016)CrossRefGoogle Scholar
  6. 6.
    Zhu, Z., Tang, J., Lambotharan, S., Chin, W.H., Fan, Z.: An integer linear programming based optimization for home demand-side management in smart grid. In: Innovative Smart Grid Technologies (ISGT), 2012 IEEE PES, pp. 1–5. IEEE, January 2012Google Scholar
  7. 7.
    Samadi, P., Wong, V.W., Schober, R.: Load scheduling and power trading in systems with high penetration of renewable energy resources. IEEE Trans. Smart Grid 7(4), 1802–1812 (2016)CrossRefGoogle Scholar
  8. 8.
    Ma, J., Chen, H.H., Song, L., Li, Y.: Residential load scheduling in smart grid: a cost efficiency perspective. IEEE Trans. Smart Grid 7(2), 771–784 (2016)Google Scholar
  9. 9.
    Rottondi, C., Barbato, A., Chen, L., Verticale, G.: Enabling privacy in a distributed game-theoretical scheduling system for domestic appliances. IEEE Trans. Smart Grid 8, 1220–1230 (2016)CrossRefGoogle Scholar
  10. 10.
    Liu, Y., Yuen, C., Yu, R., Zhang, Y., Xie, S.: Queuing-based energy consumption management for heterogeneous residential demands in smart grid. IEEE Trans. Smart Grid 7(3), 1650–1659 (2016)CrossRefGoogle Scholar
  11. 11.
    Ahmad, A., Javaid, N., Alrajeh, N., Khan, Z.A., Qasim, U., Khan, A.: A modified feature selection and artificial neural network-based day-ahead load forecasting model for a smart grid. Appl. Sci. 5(4), 1756–1772 (2015)CrossRefGoogle Scholar
  12. 12.
    Ogwumike, C., Short, M., Denai, M.: Near-optimal scheduling of residential smart home appliances using heuristic approach. In: 2015 IEEE International Conference on Industrial Technology (ICIT), pp. 3128–3133. IEEE, March 2015Google Scholar
  13. 13.
    Rasheed, M.B., Javaid, N., Ahmad, A., Khan, Z.A., Qasim, U., Alrajeh, N.: An efficient power scheduling scheme for residential load management in smart homes. Appl. Sci. 5(4), 1134–1163 (2015)CrossRefGoogle Scholar
  14. 14.
    Khan, M.A., Javaid, N., Mahmood, A., Khan, Z.A., Alrajeh, N.: A generic demand side management model for smart grid. Int. J. Energy Res. 39(7), 954–964 (2015)CrossRefGoogle Scholar
  15. 15.
    Vardakas, J.S., Zorba, N., Verikoukis, C.V.: A survey on demand response programs in smart grids: Pricing methods and optimization algorithms. IEEE Commun. Surv. Tutor. 17(1), 152–178 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Sundas Shafiq
    • 1
  • Iqra Fatima
    • 1
  • Samia Abid
    • 1
  • Sikandar Asif
    • 1
  • Sajeeha Ansar
    • 1
  • Zain Ul Abideen
    • 1
  • Nadeem Javaid
    • 1
  1. 1.COMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations