Dynamic Analysis of the Reaction Chamber for the ELIADE Array

  • Sorin VlaseEmail author
  • Paul Nicolae Borza
  • Gabriel Suliman
  • Cristian Petcu
  • Maria Luminita Scutaru
  • Marius Ghitescu
  • Cristi Nastac
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 198)


The ELI-NP Array of DEtectors (ELIADE) is one of the experimental setups being built at ELI-NP. The reaction chamber for the ELIADE array is, together with the CCD camera the goal of research team. The precision of the experiment make important the small deformation and the vibration of the equipment. To study this, a model using Finite Element Method is used. The device consists of elastic elements to a smaller or greater extent. Usually, if the velocities and the occurring loads are low then the rigid elements hypothesis can lead to an excellent model. But in the experiment that will be conduct in the laboratory with ELIADE, precision is so important that it require extremely small deformation of the device. For this a model that takes into account the elasticity of the body must be used in order to study the movement of the part of the device during the experiment.


  1. 1.
    C. Sun, Characterisation and Diagnostics of Compton Light Source, Ph.D. thesis (2009)Google Scholar
  2. 2.
    T. Heitz, H. Teodorescu-Draghicescu, S. Lache, A. Chiru, S. Vlase, M.R. Calin, Advanced T700/XB3585 UD carbon fibers-reinforced composites. J. Optoelectron. Adv. Mat. 16(5–6), 568–573 (2014)Google Scholar
  3. 3.
    M.N. Velea, C. Schneider, S. Lache, Second order hierarchical sandwich structure made of self-reinforced polymers by means of a continuos folding process. Mat. Design 102, 313–320 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Gerstmayr, J. Schöberl, A 3D finite element method for flexible multibody systems. Multibody Syst. Dyn. 15(4), 305–320 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Y.A. Khulief, On the finite element dynamic analysis of flexible mechanisms. Comput. Meth. Appl. Mech. Eng. 97(1), 23–32 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    S. Vlase, Contributions to the Elastodynamic Analysis of the Mechanisms with the Finite Element Method (In Romanian). Ph.D., Transilvania University (1989)Google Scholar
  7. 7.
    A.G. Erdman, G.N. Sandor, A. Oakberg, A general method for kineto-elastodynamic analysis and synthesis of mechanisms. J. Eng. Ind. ASME Trans. 1193 (1972)Google Scholar
  8. 8.
    S. Vlase, Finite element analysis of the planar mechanisms: numerical aspects. In Applied Mechanics, vol. 4. (Elsevier, 1992), pp. 90–100Google Scholar
  9. 9.
    A. Ibrahimbegović, S. Mamouri, R.L. Taylor, A.J. Chen, Finite Element Method in Dynamics of Flexible Multibody Systems, Multibody System Dynamics, vol. 4, No. 2–3, pp. 195–223 (2000)Google Scholar
  10. 10.
    M. Marin, S. Vlase, M. Paun, Considerations on double porosity structure for micropolar bodies. AIP Adv. 5(3), art. Number 037113 (2015)Google Scholar
  11. 11.
    M. Marin, D. Baleanu, S. Vlase, Effect of microtemperatures for micropolar thermoelastic bodies. Struct. Eng. Mech. 61(3), 381–387 (2017)CrossRefGoogle Scholar
  12. 12.
    M. Marin, Harmonic vibrations in thermoelasticity of microstretch materials, J. Vibr. Acoust. ASME 132(4), 044501–044501-6 (2010)Google Scholar
  13. 13.
    M. Marin, Weak solutions in elasticity of dipolar porous materials. Math. Probl. Eng. 20-018, Art. ID 158908 (2015)Google Scholar
  14. 14.
    W. Blajer, K. Kołodziejczyk, Improved DAE formulation for inverse dynamics simulation of cranes. Multibody Syst. Dyn. 25, 131–143 (2011)CrossRefGoogle Scholar
  15. 15.
    S. Vlase, A method of eliminating Lagrangean multipliers from the equations of motion of interconnected mechanical systems. J. Appl. Mech. ASME Trans. 54(1) (1987a)Google Scholar
  16. 16.
    S. Vlase, Elimination of Lagrangean multipliers. Mech. Res. Commun. 14, 17–22 (1987)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Sorin Vlase
    • 1
    Email author
  • Paul Nicolae Borza
    • 1
  • Gabriel Suliman
    • 2
  • Cristian Petcu
    • 2
  • Maria Luminita Scutaru
    • 1
  • Marius Ghitescu
    • 1
  • Cristi Nastac
    • 1
  1. 1.TRANSILVANIA University of BrașovBrașovRomania
  2. 2.Institut of Nuclear Physics-IFIN-HHMăgureleRomania

Personalised recommendations