Advertisement

Firefly Algorithm: Enhanced Version with Partial Population Restart Using Complex Network Analysis

Conference paper
  • 1.7k Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 465)

Abstract

In this paper, we are presenting an interesting method for controlling population diversity of the Firefly Algorithm (FA). Presented method is using the advantages of complex networks and their several characteristics, that can be helpful for the detailed analysis of metaheuristic algorithm inner dynamic. Through this work, we are trying to present a simple workflow for building and analysis of network and the most suitable choices in each step to achieve better results of FA, especially, when focusing on population diversity.

Keywords

Firefly algorithm FA Complex network Population restart 

Notes

Acknowledgements

This work was supported by Grant Agency of the Czech Republic – GACR P103/15/06700S, further by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme Project no. LO1303 (MSMT-7778/2014). Also by the European Regional Development Fund under the Project CEBIA-Tech no. CZ.1.05/2.1.00/03.0089 and by Internal Grant Agency of Tomas Bata University under the Projects no. IGA/CebiaTech/2017/004.

References

  1. 1.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Bristol (2008)Google Scholar
  2. 2.
    Yang, X.S.: Firefly algorithms for multimodal optimization. In: Proceedings of 5th Symposium on Stochastic Algorithms, Foundations and Applications. Lecture Notes in Computer Science, vol. 5792, pp. 169–178 (2009)Google Scholar
  3. 3.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  4. 4.
    Kennedy, J.: The particle swarm: social adaptation of knowledge. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 303–308 (1997)Google Scholar
  5. 5.
    Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, New York (2008). ISBN 9780521879507CrossRefzbMATHGoogle Scholar
  6. 6.
    Otte, E., Rousseau, R.: Social network analysis: a powerful strategy, also for the information sciences. J. Inf. Sci. 28(6), 441–453 (2002)CrossRefGoogle Scholar
  7. 7.
    Kudĕlka, M., Zehnalová, Š., Horák, Z., Krömer, P., Snášel, V.: Local dependency in networks. Int. J. Appl. Math. Comput. Sci. 25(2), 281–293 (2015)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Pluhacek, M., Janostik, J., Senkerik, R., Zelinka, I.: Converting PSO dynamics into complex network-initial study. In: Simos, T., Tsitouras, C. (eds.) AIP Conference Proceedings, vol. 1738, no. 1, p. 120021. AIP Publishing (2016a)Google Scholar
  9. 9.
    Pluhacek, M., Senkerik, R., Janostik, J., Viktorin, A., Zelinka, I.: Study on swarm dynamics converted into complex network. In: Proceedings of 30th European Conference on Modelling and Simulation, ECMS 2016. European Council for Modelling and Simulation (ECMS) (2016b)Google Scholar
  10. 10.
    Senkerik, R., Viktorin, A., Pluhacek, M., Janostik, J., Davendra, D.: On the influence of different randomization and complex network analysis for differential evolution. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 3346–3353. IEEE (2016a)Google Scholar
  11. 11.
    Senkerik, R., Viktorin, A., Pluhacek, M., Janostik, J., Oplatkova, Z.K.: Study on the time development of complex network for metaheuristic. In: Artificial Intelligence Perspectives in Intelligent Systems, pp. 525–533. Springer International Publishing (2016b)Google Scholar
  12. 12.
    Pluhacek, M., Viktorin, A., Senkerik, R., Kadavy, T., Zelinka, I.: PSO with partial population restart based on complex network analysis. In: International Conference on Hybrid Artificial Intelligence Systems, pp. 183–192 (2017)Google Scholar
  13. 13.
    Janostik, J., Pluhacek, M., Senkerik, R., Zelinka, I., Spacek, F.: Capturing inner dynamics of firefly algorithm in complex network—initial study. In: Proceedings of the Second International Afro-European Conference for Industrial Advancement (AECIA 2015), Villejuif, pp. 571–577. Springer Verlag (2016). ISSN 2194-5357Google Scholar
  14. 14.
    Newman, M.E.J.: The mathematics of networks. New Palgrave Encycl. Econ. 2 (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations