Yoo, I., Alafaireet, P., Marinov, M., Pena-Hernandez, K., Gopidi, R., Chang, J.F., Hua, L.: Data mining in healthcare and biomedicine: a survey of the literature. J. Med. Syst. 36(4), 2431–2448 (2012)
CrossRef
Google Scholar
Jensen, P.B., Jensen, L.J., Brunak, S.: Mining electronic health records: towards better research applications and clinical care. Nat. Rev. Genet. 13(6), 395–405 (2012)
CrossRef
Google Scholar
Hughes, G.: How big is big data in healthcare. From a Shot in the Arm Blog (2011)
Google Scholar
Raghupathi, W., Raghupathi, V.: Big data analytics in healthcare: promise and potential. Health Inf. Sci. Syst. 2(1), 3 (2014)
CrossRef
Google Scholar
Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier (2011)
Google Scholar
Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012)
MATH
Google Scholar
Sammut, C., Webb, G.I.: Encyclopedia of Machine Learning. Springer Science & Business Media, New York (2011)
MATH
Google Scholar
Kantardzic, M.: Data Mining: Concepts, Models, Methods, and Algorithms. Wiley, Chichester (2011)
CrossRef
MATH
Google Scholar
Diamond, M.: Mastering Medical Coding. Elsevier Health Sciences (2013)
Google Scholar
Tan, P.N., et al.: Introduction to Data Mining. Pearson Education India (2006)
Google Scholar
Tsymbal, A.: The problem of concept drift: definitions and related work. Computer Science Department, Trinity College Dublin 106(2) (2004)
Google Scholar
Rahm, E., Do, H.H.: Data cleaning: problems and current approaches. IEEE Data Eng. Bull. 23(4), 3–13 (2000)
Google Scholar
King, L.A., Fisher, J., Jacquin, L., Zeltwanger, P.: The digital hospital: opportunities and challenges. J. Healthc. Inf. Manag. JHIM 17(1), 37–45 (2002)
Google Scholar
Andreu-Perez, J., Leff, D.R., Ip, H.M., Yang, G.Z.: From wearable sensors to smart implants–toward pervasive and personalized healthcare. IEEE Trans. Biomed. Eng. 62(12), 2750–2762 (2015)
CrossRef
Google Scholar
Kidd, C.D., Orr, R., Abowd, G.D., Atkeson, C.G., Essa, I.A., MacIntyre, B., Mynatt, E., Starner, T.E., Newstetter, W.: The aware home: a living laboratory for ubiquitous computing research. In: Streitz, N.A., Siegel, J., Hartkopf, V., Konomi, S. (eds.) CoBuild 1999. LNCS, vol. 1670, pp. 191–198. Springer, Heidelberg (1999). doi:10.1007/10705432_17
CrossRef
Google Scholar
Caceres, C.A.: Medical Devices-measurement, Quality Assurance, and Standards. Number 800. ASTM International (1983)
Google Scholar
Koumoundouros, E.: Clinical engineering and uncertainty in clinical measurements. Australas. Phys. Eng. Sci. Med. 37(3), 467 (2014)
CrossRef
Google Scholar
Bland, J.M., Altman, D.G.: Statistics notes: measurement error. BMJ 313(7059), 744 (1996)
CrossRef
Google Scholar
Sethi, N., Sethi, J., Torgovnick, E., Arsura, E.: Physiological and non-physiological EEG artifacts. Internet J. Neuromonitoring 5(1) (2007)
Google Scholar
Wood, A.M., White, I.R., Thompson, S.G.: Are missing outcome data adequately handled? A review of published randomized controlled trials in major medical journals. Clin. Trials 1(4), 368–376 (2004)
CrossRef
Google Scholar
Little, R.J., D’agostino, R., Cohen, M.L., Dickersin, K., Emerson, S.S., Farrar, J.T., Frangakis, C., Hogan, J.W., Molenberghs, G., Murphy, S.A., et al.: The prevention and treatment of missing data in clinical trials. N. Engl. J. Med. 367(14), 1355–1360 (2012)
CrossRef
Google Scholar
Marlin, B.M., Kale, D.C., Khemani, R.G., Wetzel, R.C.: Unsupervised pattern discovery in electronic health care data using probabilistic clustering models. In: Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium, pp. 389–398. ACM (2012)
Google Scholar
Azarm-Daigle, M., Kuziemsky, C., Peyton, L.: A review of cross organizational healthcare data sharing. Procedia Comput. Sci. 63, 425–432 (2015)
CrossRef
Google Scholar
Quan, H., Li, B., Duncan Saunders, L., Parsons, G.A., Nilsson, C.I., Alibhai, A., Ghali, W.A.: Assessing validity of ICD-9-CM and ICD-10 administrative data in recording clinical conditions in a unique dually coded database. Health Serv. Res. 43(4), 1424–1441 (2008)
CrossRef
Google Scholar
International classification of diseases, (ICD-10-CM/PCS) transition, October 2015
Google Scholar
Meyer, H.: Coding complexity: US health care gets ready for the coming of ICD-10. Health Aff. 30(5), 968–974 (2011)
CrossRef
Google Scholar
Fisher, E.S., Whaley, F.S., Krushat, W.M., Malenka, D.J., Fleming, C., Baron, J.A., Hsia, D.C.: The accuracy of medicare’s hospital claims data: progress has been made, but problems remain. Am. J. Public Health 82(2), 243–248 (1992)
CrossRef
Google Scholar
MacIntyre, C.R., Ackland, M.J., Chandraraj, E.J., Pilla, J.E.: Accuracy of ICD-9-CM codes in hospital morbidity data, victoria: implications for public health research. Aust. N. Z. J. Public Health 21(5), 477–482 (1997)
CrossRef
Google Scholar
Cortes, C., Jackel, L.D., Chiang, W.P., et al.: Limits on learning machine accuracy imposed by data quality. KDD 95, 57–62 (1995)
Google Scholar
Vapnik, V.N., Vapnik, V.: Statistical Learning Theory, vol. 1. Wiley, New York (1998)
MATH
Google Scholar
Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory. MIT press (1994)
Google Scholar
Sessions, V., Valtorta, M.: The effects of data quality on machine learning algorithms. ICIQ 6, 485–498 (2006)
Google Scholar
Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-based outliers: algorithms and applications. VLDB J. Int. J. Very Large Data Bases 8(3–4), 237–253 (2000)
CrossRef
Google Scholar
Bacioiu, A.S., Sauntry, D.M., Boyle, J.S., Wong, L.C.W., Leonard, P.F., Chandrasekar, R.: Method and apparatus for analysis and decomposition of classifier data anomalies. US Patent 7,426,497, 16 September 2008
Google Scholar
Little, R., Rubin, D.: Statistical analysis with missing data (1987)
Google Scholar
Arbuckle, J.L., Marcoulides, G.A., Schumacker, R.E.: Full information estimation in the presence of incomplete data. In: Advanced Structural Equation Modeling: Issues and Techniques, vol. 243, p. 277 (1996)
Google Scholar
Rubin, D.B.: Multiple Imputation for Nonresponse in Surveys, vol. 81. Wiley (2004)
Google Scholar
Collins, L.M., Schafer, J.L., Kam, C.M.: A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychol. Methods 6(4), 330 (2001)
CrossRef
Google Scholar
Graham, J.W.: Missing data theory. In: Graham, J.W. (ed.) Missing Data, pp. 3–46. Springer, New York (2012). doi:10.1007/978-1-4614-4018-5_1
CrossRef
Google Scholar
Rector, A.L., Brandt, S.: Why do it the hard way? The case for an expressive description logic for snomed. J. Am. Med. Inform. Assoc. 15(6), 744–751 (2008)
CrossRef
Google Scholar
Lindenauer, P.K., Lagu, T., Shieh, M.S., Pekow, P.S., Rothberg, M.B.: Association of diagnostic coding with trends in hospitalizations and mortality of patients with pneumonia, 2003–2009. JAMA 307(13), 1405–1413 (2012)
CrossRef
Google Scholar
Weber, G.M., Mandl, K.D., Kohane, I.S.: Finding the missing link for big biomedical data. JAMA 311(24), 2479–2480 (2014)
Google Scholar
Stoto, M.A.: Population health in the Affordable Care Act Era, vol. 1. AcademyHealth, Washington, DC (2013)
Google Scholar
Feldman, K., Hazekamp, N., Chawla, N.V.: Mining the clinical narrative: all text are not equal. In: 2016 IEEE International Conference on Healthcare Informatics (ICHI), pp. 271–280. IEEE (2016)
Google Scholar
Visscher, P.M., Brown, M.A., McCarthy, M.I., Yang, J.: Five years of GWAS discovery. Am. J. Hum. Genet. 90(1), 7–24 (2012)
CrossRef
Google Scholar
Lewis, D.P., Jebara, T., Noble, W.S.: Support vector machine learning from heterogeneous data: an empirical analysis using protein sequence and structure. Bioinformatics 22(22), 2753–2760 (2006)
CrossRef
Google Scholar
Diamond, C.C., Mostashari, F., Shirky, C.: Collecting and sharing data for population health: a new paradigm. Health Aff. 28(2), 454–466 (2009)
CrossRef
Google Scholar
Hillestad, R.: Identity crisis: an examination of the costs and benefits of a unique patient identifier for the US health care system. Rand Corporation (2008)
Google Scholar
Fan, J., Han, F., Liu, H.: Challenges of big data analysis. Natl. Sci. Rev. 1(2), 293–314 (2014)
CrossRef
Google Scholar
Johnstone, I.M., Titterington, D.M.: Statistical challenges of high-dimensional data (2009)
Google Scholar
Lafferty, J.D., Wasserman, L.: Challenges in statistical machine learning. Statistica Sinica 16, 307 (2006)
MathSciNet
Google Scholar
He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)
CrossRef
Google Scholar
López, V., Fernández, A., García, S., Palade, V., Herrera, F.: An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 250, 113–141 (2013)
CrossRef
Google Scholar
Box, G.E.: Robustness in the strategy of scientific model building. Robust. Stat. 1, 201–236 (1979)
CrossRef
Google Scholar
Oreskes, N., Shrader-Frechette, K., Belitz, K., et al.: Verification, validation, and confirmation of numerical models in the earth sciences. Science 263(5147), 641–646 (1994)
CrossRef
Google Scholar
Szummer, M.O.: Learning from partially labeled data. PhD thesis, Massachusetts Institute of Technology (2002)
Google Scholar
Gensinger Jr., R.A.: Analytics in Healthcare: An Introduction. HIMSS (2014). CPHIMS, FHIMSS
Google Scholar
Glas, A.S., Lijmer, J.G., Prins, M.H., Bonsel, G.J., Bossuyt, P.M.: The diagnostic odds ratio: a single indicator of test performance. J. Clin. Epidemiol. 56(11), 1129–1135 (2003)
CrossRef
Google Scholar
Kulis, B., et al.: Metric learning: a survey. Found. Trends® Mach. Learn. 5(4), 287–364 (2013)
CrossRef
MATH
MathSciNet
Google Scholar
Arcuri, A., Fraser, G.: Parameter tuning or default values? An empirical investigation in search-based software engineering. Empir. Softw. Eng. 18(3), 594–623 (2013)
CrossRef
Google Scholar
Hoos, H.H.: Automated algorithm configuration and parameter tuning. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 37–71. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21434-9_3
CrossRef
Google Scholar
Kelley, C.T.: Iterative methods for optimization. SIAM (1999)
Google Scholar
Sra, S., Nowozin, S., Wright, S.J.: Optimization for Machine Learning. MIT Press (2012)
Google Scholar
Lange, K., Chi, E.C., Zhou, H.: A brief survey of modern optimization for statisticians. Int. Stat. Rev. 82(1), 46–70 (2014)
CrossRef
MathSciNet
Google Scholar
Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manage. 45(4), 427–437 (2009)
CrossRef
Google Scholar
Zhao, J., Papapetrou, P., Asker, L., Boström, H.: Learning from heterogeneous temporal data in electronic health records. J. Biomed. Inform. 65, 105–119 (2017)
CrossRef
Google Scholar
Carter, H., Hofree, M., Ideker, T.: Genotype to phenotype via network analysis. Curr. Opin. Genet. Dev. 23(6), 611–621 (2013)
CrossRef
Google Scholar
Feldman, K., Stiglic, G., Dasgupta, D., Kricheff, M., Obradovic, Z., Chawla, N.V.: Insights into population health management through disease diagnoses networks. Sci. Rep. 6, Article no. 30465 (2016)
Google Scholar
Hunyadi, B., Van Huffel, S., De Vos, M.: The power of tensor decompositions in biomedical applications (2016)
Google Scholar
Luo, Y., Wang, F., Szolovits, P.: Tensor factorization toward precision medicine. Brief. Bioinform. 18(3), 511–514 (2017)
Google Scholar