Advertisement

Production and Biosynthesis of Bioactive Stilbenoids in Hairy Root Cultures

Chapter
  • 660 Downloads

Abstract

Stilbenoids are plant defense phenolic compounds that exhibit numerous biological activities with potential applications in human health. These compounds are present in non-taxonomically related plants species, such as grape and peanut. As many other defense compounds, most stilbenoids are either absent or accumulate in very low levels in non-stressed plants, thereby, highlighting the need to develop a sustainable system for their production. In order to address this issue, hairy root cultures of stilbenoid-producing species, including grapevine (Vitis vinifera), muscadine (V. rotundifolia), and peanut (Arachis hypogaea), have been established via infection of plant tissues with Agrobacterium rhizogenes. Several elicitation treatments have been explored in order to increase the levels of stilbenoids in these cultures. Among these treatments, the co-treatment with methyl jasmonate and methyl-β-cyclodextrin has been the most effective in providing sustainable and high levels of stilbenoids. Different types of stilbenoids have been identified in hairy roots of different plant species. For instance, prenylated stilbenoids are found in elicitor-treated peanut hairy root cultures but not in hairy root cultures of muscadine or grapevine. In addition to providing a platform for stilbenoid production, hairy roots are also being explored to study the biosynthesis of these bioactive compounds. The present chapter provides the status of production and biosynthesis of stilbenoids in grapevine, muscadine, and peanut hairy root cultures.

Keywords

Agrobacterium rhizogenes Cyclodextrin Elicitation Grape Grapevine Hairy root Muscadine Peanut Stilbene Stilbenoid 

Notes

Acknowledgments

Research in the Medina-Bolivar laboratory focused on the production of stilbenoids in peanut has been supported by the United States Department of Agriculture-NIFA (Grant No. 2014-67014-21701) and the Arkansas Biosciences Institute.

References

  1. Abbott JA, Medina-Bolivar F, Martin EM, Engelberth AS, Villagarcia H, Clausen EC, Carrier DJ (2010) Purification of resveratrol, arachidin-1, and arachidin-3 from hairy root cultures of peanut (Arachis hypogaea) and determination of their antioxidant activity and cytotoxicity. Biotechnol Prog 26:1344–1351CrossRefPubMedGoogle Scholar
  2. Aguamah GE, Langcake P, Leworthy DP, Page JA, Pryce RJ, Strange RN (1981) Two novel stilbene phytoalexins from Arachis hypogaea. Phytochemistry 20:1381–1383CrossRefGoogle Scholar
  3. Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90CrossRefPubMedGoogle Scholar
  4. Aisyah S, Gruppen H, Slager M, Helmink B, Vincken J-P (2015) Modification of prenylated stilbenoids in peanut (Arachis hypogaea) seedlings by the same fungi that elicited them: The fungus strikes back. J Agric Food Chem 63:9260–9268CrossRefPubMedGoogle Scholar
  5. Ball JM, Medina-Bolivar F, Defrates K, Hambleton E, Hurlburt ME, Fang L, Yang T, Nopo-olazabal L, Atwill RL, Ghai P, Parr RD (2015) Investigation of stilbenoids as potential therapeutic agents for Rotavirus gastroenteritis. Adv Virol. https://doi.org/10.1155/2015/293524
  6. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506CrossRefPubMedGoogle Scholar
  7. Belchí-Navarro S, Almagro L, Lijavetzky D, Bru R, Pedreño MA (2012) Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and methyljasmonate. Plant Cell Rep 31:81–89CrossRefPubMedGoogle Scholar
  8. Bontpart T, Marlin T, Vialet S, Guiraud J-L, Pinasseau L, Meudec E, Sommerer N, Cheynier V, Terrier N (2016) Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine. J Exp Bot 67:3537–3550CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boonlaksiri C, Oonanant W, Kongsaeree P, Kittakoop P, Tanticharoen M, Thebtaranonth Y (2000) An antimalarial stilbene from Artocarpus integer. Phytochemistry 54:415–417CrossRefPubMedGoogle Scholar
  10. Brents LK, Medina-Bolivar F, Seely KA, Nair V, Bratton SM, Ñopo-Olazabal L, Patel RY, Liu H, Doerksen RJ, Prather PL et al (2012) Natural prenylated resveratrol analogs arachidin-1 and -3 demonstrate improved glucuronidation profiles and have affinity for cannabinoid receptors. Xenobiotica 42:139–156CrossRefPubMedGoogle Scholar
  11. Bru R, Sellés S, Casado-Vela J, Belchí-Navarro S, Pedreño MA (2006) Modified cyclodextrins are chemically defined glucan inducers of defense responses in grapevine cell cultures. J Agric Food Chem 54:65–71CrossRefPubMedGoogle Scholar
  12. Chang J-C, Lai Y-H, Djoko B, Wu P-L, Liu C-D, Liu Y-W, Chiou RY-Y (2006) Biosynthesis enhancement and antioxidant and anti-inflammatory activities of peanut (Arachis hypogaea L.) arachidin-1, arachidin-3, and isopentadienylresveratrol. J Agric Food Chem 54:10281–10287CrossRefPubMedGoogle Scholar
  13. Chong J, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177:143–155CrossRefGoogle Scholar
  14. Condori J, Sivakumar G, Hubstenberger J, Dolan MC, Sobolev VS, Medina-Bolivar F (2010) Induced biosynthesis of resveratrol and the prenylated stilbenoids arachidin-1 and arachidin-3 in hairy root cultures of peanut: effects of culture medium and growth stage. Plant Physiol Biochem 48:310–318CrossRefPubMedGoogle Scholar
  15. Cooksey C, Garratt P, Richards S (1988) A dienyl stilbene phytoalexin from Arachis hypogaea. Phytochemistry 27:1015–1016CrossRefGoogle Scholar
  16. Djoko B, Chiou RY-Y, Shee J-J, Liu Y-W (2007) Characterization of immunological activities of peanut stilbenoids, arachidin-1, piceatannol, and resveratrol on lipopolysaccharide-induced inflammation of RAW 264.7 macrophages. J Agric Food Chem 55:2376–2383CrossRefPubMedGoogle Scholar
  17. Dunstan DI, Short KC (1977) Improved growth of tissue cultures of the onion, Allium cepa. Physiol Plant 41:70–72CrossRefGoogle Scholar
  18. Fiorentino A, D’Abrosca B, Pacifico S, Iacovino R, Mastellone C, Di Blasio B, Monaco P (2006) Distachyasin: a new antioxidant metabolite from the leaves of Carex distachya. Bioorganic Med Chem Lett 16:6096–6101CrossRefGoogle Scholar
  19. Flamini R, Mattivi F, De Rosso M, Arapitsas P, Bavaresco L (2013) Advanced knowledge of three important classes of grape phenolics: anthocyanins, stilbenes and flavonols. Int J Mol Sci 14:19651–19669CrossRefPubMedPubMedCentralGoogle Scholar
  20. Flombaum J, Santos L (2005) Rhesus monkeys attribute perceptions to others. Curr Biol 15:447–452CrossRefPubMedGoogle Scholar
  21. Hakim EH, Ulinnuha UZ, Syah YM, Ghisalberti EL (2002) Artoindonesianins N and O, new prenylated stilbene and prenylated arylbenzofuran derivatives from Artocarpus gomezianus. Fitoterapia 73:597–603CrossRefPubMedGoogle Scholar
  22. Hasan MM, Cha M, Bajpai VK, Baek K-H (2012) Production of a major stilbene phytoalexin, resveratrol in peanut (Arachis hypogaea) and peanut products: a mini review. Rev Environ Sci Bio/Technol 12:1–13Google Scholar
  23. Hidalgo D, Martinez-Marquez A, Moyano E, Bru-Martinez R, Corchete P, Palazon J (2017) Bioconversion of stilbenes in genetically root and cell cultures of tobacco. Sci Rep. https://doi.org/10.1038/srep45331
  24. Holl J, Vannozzi A, Czemmel S, D’Onofrio C, Walker AR, Rausch T, Lucchin M, Boss PK, Dry IB, Bogs J (2013) The R2R3-MYB transcription factors MYB14 and MYB15 regulate stilbene biosynthesis in Vitis vinifera. Plant Cell 25:4135–4149CrossRefPubMedPubMedCentralGoogle Scholar
  25. Huang C-P, Au L-C, Chiou RY-Y, Chung P-C, Chen S-Y, Tang W-C, Chang C-L, Fang W-H, Lin S-B (2010) Arachidin-1, a peanut stilbenoid, induces programmed cell death in human leukemia HL-60 cells. J Agric Food Chem 58:12123–12129CrossRefPubMedGoogle Scholar
  26. Ioset J-R, Marston A, Gupta MP, Hostettmann K (2001) Five new prenylated stilbenes from the root bark of Lonchocarpus chiricanus. J Nat Prod 64:710–715CrossRefPubMedGoogle Scholar
  27. Lijavetzky D, Almagro L, Belchi-Navarro S, Martínez-Zapater JM, Bru R, Pedreño M (2008) Synergistic effect of methyljasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures. BMC Res Notes 1:132CrossRefPubMedPubMedCentralGoogle Scholar
  28. Liu Z, Wu J, Huang D (2013) New stilbenoids isolated from fungus-challenged black skin peanut seeds and their adipogenesis inhibitory activity in 3T3-L1 cells. J Agric Food Chem 61:4155–4161CrossRefPubMedGoogle Scholar
  29. Lohr M, Schwender J, Polle JE (2012) Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci 185–186:9–22CrossRefPubMedGoogle Scholar
  30. López-Nicolás JM, Núñez-Delicado E, Pérez-López AJ, Barrachina ÁC, Cuadra-Crespo P (2006) Determination of stoichiometric coefficients and apparent formation constants for β-cyclodextrin complexes of trans-resveratrol using reversed-phase liquid chromatography. J Chromatogr A 1135:158–165CrossRefPubMedGoogle Scholar
  31. Lyons MM, Yu C, Toma RB, Cho SY, Reiboldt W, Lee J, van Breemen RB (2003) Resveratrol in raw and baked blueberries and bilberries. J Agric Food Chem 51:5867–5870CrossRefPubMedGoogle Scholar
  32. Matencio A, García-Carmona F, López-Nicolás JM (2016) Encapsulation of piceatannol, a naturally occurring hydroxylated analogue of resveratrol, by natural and modified cyclodextrins. Food Funct 7:2367–2373CrossRefPubMedGoogle Scholar
  33. Medina-Bolivar F, Condori J, Rimando AM, Hubstenberger J, Shelton K, O’Keefe SF, Bennett S, Dolan MC (2007) Production and secretion of resveratrol in hairy root cultures of peanut. Phytochemistry 68:1992–2003CrossRefPubMedGoogle Scholar
  34. Nopo-Olazabal C, Hubstenberger J, Nopo-Olazabal L, Medina-Bolivar F (2013) Antioxidant activity of selected stilbenoids and their bioproduction in hairy root cultures of muscadine grape (Vitis rotundifolia michx.) J Agric Food Chem 61:11744–11758CrossRefPubMedGoogle Scholar
  35. Nopo-Olazabal C, Condori J, Nopo-Olazabal L, Medina-Bolivar F (2014) Differential induction of antioxidant stilbenoids in hairy roots of Vitis rotundifolia treated with methyl jasmonate and hydrogen peroxide. Plant Physiol Biochem 74:50–69CrossRefPubMedGoogle Scholar
  36. Potrebko I, Resurreccion AV (2009) Effect of ultraviolet doses in combined ultraviolet-ultrasound treatments on trans-resveratrol and trans-piceid contents in sliced peanut kernels. J Agric Food Chem 57:7750–7756CrossRefPubMedGoogle Scholar
  37. Ramos-Valdivia AC, van der Heijden R, Verpoorte R (1997) Isopentenyl diphosphate isomerase: a core enzyme in isoprenoid biosynthesis. A review of its biochemistry and function. Nat Prod Rep 14:591–603CrossRefPubMedGoogle Scholar
  38. Rimando AM, Kalt W, Magee JB, Dewey J, Ballington JR (2004) Resveratrol, pterostilbene, and piceatannol in Vaccinium Berries. J Agric Food Chem 52:4713–4719CrossRefPubMedGoogle Scholar
  39. Sales JM, Resurreccion AVA (2014) Resveratrol in peanuts. Crit Rev Food Sci Nutr 54:734–770CrossRefPubMedGoogle Scholar
  40. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204CrossRefGoogle Scholar
  41. Shen T, Wang X-N, Lou H-X (2009) Natural stilbenes: an overview. Nat Prod Rep 26:916–935CrossRefPubMedGoogle Scholar
  42. Sivakumar G, Liu C, Towler MJ, Weathers PJ (2010) Biomass production of hairy roots of Artemisia annua and Arachis hypogaea in a scaled-up mist bioreactor. Biotechnol Bioeng 107:802–813CrossRefPubMedPubMedCentralGoogle Scholar
  43. Sivakumar G, Medina-Bolivar F, Lay JO Jr, Dolan MC, Condori J, Grubbs SK, Wright SM, Baque MA, Lee EJ, Paek KY (2011) Bioprocess and bioreactor: next generation technology for production of potential plant-based antidiabetic and antioxidant molecules. Curr Med Chem 18:79–90CrossRefPubMedGoogle Scholar
  44. Sobolev VS (2008) Localized production of phytoalexins by peanut (Arachis hypogaea) kernels in response to invasion by Aspergillus species. J Agric Food Chem 56:1949–1954CrossRefPubMedGoogle Scholar
  45. Sobolev VS (2013) Production of phytoalexins in peanut (Arachis hypogaea) seed elicited by selected microorganisms. J Agric Food Chem 61:1850–1858CrossRefPubMedGoogle Scholar
  46. Sobolev VS, Potter TL, Horn BW (2006) Prenylated stilbenes from peanut root mucilage. Phytochem Anal 17:312–322CrossRefPubMedGoogle Scholar
  47. Sobolev VS, Neff S, Gloer JB (2009) New stilbenoids from peanut (Arachis hypogaea) seeds challenged by an Aspergillus caelatus strain. J Agric Food Chem 57:62–68CrossRefPubMedGoogle Scholar
  48. Sobolev VS, Neff S, Gloer JB (2010) New dimeric stilbenoids from fungal-challenged peanut (Arachis hypogaea) seeds. J Agric Food Chem 58:875–881CrossRefPubMedGoogle Scholar
  49. Sobolev VS, Khan SI, Tabanca N, Wedge DE, Manly SP, Cutler SJ, Coy MR, Becnel JJ, Neff SA, Gloer JB (2011) Biological activity of peanut (Arachis hypogaea) phytoalexins and selected natural and synthetic stilbenoids. J Agric Food Chem 59:1673–1682CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sobolev VS, Krausert NM, Gloer JB (2016) New monomeric stilbenoids from peanut (Arachis hypogaea) seeds challenged by an Aspergillus flavus strain. J Agric Food Chem 64:579–584CrossRefPubMedGoogle Scholar
  51. Terrier N, Torregrosa L, Ageorges A, Vialet S, Verries C, Cheynier V, Romieu C (2008) Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway. Plant Physiol 149:1028–1041CrossRefPubMedGoogle Scholar
  52. Tisserant L-P, Aziz A, Jullian N, Jeandet P, Clément C, Courot E, Boitel-Conti M (2016) Enhanced stilbene production and excretion in Vitis vinifera cv Pinot Noir hairy root cultures. Molecules 21:1703CrossRefGoogle Scholar
  53. Tomé-Carneiro J, Larrosa M, González-Sarrías A, Tomás-Barberán FA, García-Conesa MT, Espín JC (2013) Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr Pharm Des 19:6064–6093CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tropf S, Lanz T, Rensing SA, Schröder J, Schröder G (1994) Evidence that stilbene synthases have developed from chalcone synthases several times in the course of evolution. J Mol Evol 38:610–618CrossRefPubMedGoogle Scholar
  55. Van Der Kaaden JE, Hemscheidt TK, Mooberry SL (2001) Mappain, a new cytotoxic prenylated stilbene from Macaranga mappa. J Nat Prod 64:103–105CrossRefGoogle Scholar
  56. Vanetten HD, Sandrock RW, Wasmann CC, Soby SD, Mccluskey K, Wang P (1995) Detoxification of phytoanticipins and phytoalexins by phytopathogenic fungi. Can J Bot 73:518–525CrossRefGoogle Scholar
  57. Vitaglione P, Sforza S, Galaverna G, Ghidini C, Caporaso N, Vescovi PP, Fogliano V, Marchelli R (2005) Bioavailability of trans-resveratrol from red wine in humans. Mol Nutr Food Res 49:495–504CrossRefPubMedGoogle Scholar
  58. Wu Z, Song L, Huang D (2011) Food grade fungal stress on germinating peanut seeds induced phytoalexins and enhanced polyphenolic antioxidants. J Agric Food Chem 59:5993–6003CrossRefPubMedGoogle Scholar
  59. Yang T, Fang L, Nopo-Olazabal C, Condori J, Nopo-Olazabal L, Balmaceda C, Medina-Bolivar F (2015) Enhanced production of resveratrol, piceatannol, arachidin-1, and arachidin-3 in hairy root cultures of peanut co-treated with methyl jasmonate and cyclodextrin. J Agric Food Chem 63:3942–3950CrossRefPubMedGoogle Scholar
  60. Yang T, Fang L, Rimando AM, Sobolev V, Mockaitis K, Medina-Bolivar F (2016) A stilbenoid-specific prenyltransferase utilizes dimethylallyl pyrophosphate from the plastidic terpenoid pathway. Plant Physiol 171:2483–2498PubMedPubMedCentralGoogle Scholar
  61. Yazaki K, Sasaki K, Tsurumaru Y (2009) Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. Phytochemistry 70:1739–1745CrossRefPubMedGoogle Scholar
  62. Yoder BJ, Cao S, Norris A, Miller JS, Ratovoson F, Razafitsalama J, Andriantsiferana R, Rasamison VE, Kingston DGI (2007) Antiproliferative prenylated stilbenes and flavonoids from Macaranga alnifolia from the Madagascar rainforest. J Nat Prod 70:342–346CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Arkansas Biosciences Institute, Arkansas State UniversityJonesboroUSA
  2. 2.Arkansas Biosciences Institute, Department of Biological SciencesArkansas State UniversityJonesboroUSA

Personalised recommendations