Power Harvesting and Data Exchange Links

  • B. Gil
  • H. Ip
  • Guang-Zhong Yang


For data exchange of implantable devices, wireless links are unavoidable except for the case when an indwelling catheter or probe is allowed to establish either a direct or close contact with the implantable sensor. Light transmission via optical fibers can offer a solution to accomplish data exchange. However, without a conductive path to the outside world, the environment found inside the human body for the propagation of electromagnetic radiation poses new challenges. The problem of data exchange in implantable sensors only encounters a contender of the same level when sensor powering comes to play, at least for active sensing systems. It is therefore possible to retrieve data from passive sensors with no need for DC powering, as will be discussed later in this chapter. Nevertheless, the vast majority of implantable sensors are still actively powered and the subject of power consumption cannot be overlooked. Low power consumption is of paramount importance in implantables to ensure long-term function of the sensor and patient safety.

List of Acronyms


Alternate current


Analog-to-digital converter


Amplitude modulation


Application specific integrated circuit


Amplitude shift keying


Binary phase shift keying


Body sensor network


Butterworth–Van Dyke Model


Complementary metal-oxide-semiconductor


Continuous wave


Digital-to-analog converter


Digital baseband


Direct current


Differential phase shift keying


Dynamic random access memory


Double synchronized switch harvesting






Film bulk acoustic resonator


Federal Communications Commission


Food and Drug Administration


Frequency modulation


Frequency shift keying


Integrated circuit


Interdigital transducer


Internet of things


Industrial, scientific and medical band


Krimholtz–Leedom–Matthaei model


Inductor–capacitor circuit


Low drop output


Light-emitting diode


Low-pass filter


Load shift modulation


Microelectromechanical system


Miller encoding scheme


Micro-fibre composites


Medical implant communication service band


Metal oxide semiconductor field effect transistor


Maximum permissible exposure


Magnetic resonance imaging


On-off keying


Power amplifier






Phase-locked loop




Phase modulation


p-channel MOSFET


Power management unit






Phase shift keying


Power transfer efficiency


Programmable unijunction transistor


Photovoltaic array


Polyvinylidene difluoride


Pulse-width modulation


Resistor–capacitor circuit




Radiofrequency identifier


Resistor–inductor–capacitor circuit




Specific absorption rate


Surface acoustic wave resonator


Silicon controlled rectifier


Synchronous dynamic random access memory


Synchronous electric charge extractor


Synchronized switch harvesting on inductor


Thermoelectric generator




Universal serial bus


Ultrasonic transcutaneous energy transfer


Ultra-wide band


Voltage-controlled oscillator


Wireless medical telemetry service band


Wireless power consortium


  1. 1.
    K. Bazaka, M.V. Jacob, Implantable devices: issues and challenges. Electronics 2, 1–34 (2013)CrossRefGoogle Scholar
  2. 2.
    A. Dewan et al., Alternative power sources for remote sensors: A review. J. Power Sources 245, 129–143 (2014)CrossRefGoogle Scholar
  3. 3.
    D. Pech et al., Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010)CrossRefGoogle Scholar
  4. 4.
    S. Xu et al., Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4, 1543 (2013)CrossRefGoogle Scholar
  5. 5.
    J. Olivo et al., Biofuel cells and inductive powering as energy harvesting techniques for implantable sensors. Sci. Adv. Mater. 3, 420–425 (2011)CrossRefGoogle Scholar
  6. 6.
    S. Kerzenmacher et al., Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J. Power Sources 182, 1–17 (2008)CrossRefGoogle Scholar
  7. 7.
    P. Cinquin et al., A glucose biofuel cell implanted in rats. PLoS ONE 5(5), e10476 (2010)CrossRefGoogle Scholar
  8. 8.
    E. Katz, K. MacVittie, Implanted biofuel cells operating in vivo—methods, applications and perspectives—feature article. Energy Environm. Sci. 6, 2791–2803 (2013)CrossRefGoogle Scholar
  9. 9.
    P.P. Mercier et al., Energy extraction from the biologic battery in the inner ear. Nat. Biotechnol. 30(12), 1240–1243 (2012)CrossRefGoogle Scholar
  10. 10.
    M. Khan et al., A novel SPICE implementation of MPPT technique for implantable solar powered cardiac biosensors, in 9th International Conference on Industrial and Information Systems (ICIIS) (2014)Google Scholar
  11. 11.
    S. Ayazian et al., A photovoltaic-driven and energy-autonomous CMOS implantable sensor. IEEE Trans. Biomed. Circuits Syst. 6(4), 336–343 (2012)CrossRefGoogle Scholar
  12. 12.
    K. Sankaragomathi et al., A 27 μW subcutaneous wireless biosensing platform with optical power and data transfer, in IEEE Proceedings of the Custom Integrated Circuits Conference, pp. 1–4 (2014)Google Scholar
  13. 13.
    Y. Yang et al., Suitability of a thermoelectric power generator for implantable electronic devices. J. Phys. D Appl. Phys. 40, 5790–5800 (2007)CrossRefGoogle Scholar
  14. 14.
    C. Wu et al., A pliable and batteryless real-time ecg monitoring system-in-a-patch, in IEEE Transactions on Very Large Integration Systems, 2015Google Scholar
  15. 15.
    M. Ashraf and N. Masoumi, A thermal energy harvesting power supply with an internal startup circuit for pacemakers, IEEE Transactions on Very Large Integration Systems (2015)Google Scholar
  16. 16.
    S.E. Jo et al., Flexible thermoelectric generator for human body heat energy harvesting. Electron. Lett. 48(16), 1013–1015 (2012)CrossRefGoogle Scholar
  17. 17.
    C. Watkins et al., Low-grade-heat energy harvesting using superlattice thermoelectrics for applications in implantable medical devices and sensors, in International Conference on Thermoelectrics (2005)Google Scholar
  18. 18.
    D. Rozgic, D. Markovic, A 0.78 mW/cm2 autonomous thermoelectric energy-harvester for biomedical sensors, in Symposium on VLSI Circuits Digest of Technical Papers (2015)Google Scholar
  19. 19.
    H. Zhang et al., A flexible and implantable piezoelectric generator harvesting energy from the pulsation of the ascending aorta: in vitro and in vivo studies. Nano Energy 12, 296–304 (2015)CrossRefGoogle Scholar
  20. 20.
    N. Fadhil et al., Energy harvesting using nano scale dual layers PVDF film for blood artery, in IEEE Long Island Systems, Applications and Technology Conference, pp. 1–6 (2013)Google Scholar
  21. 21.
    M.A. Karami, D.J. Inman, Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett. 100, 042901 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Deterre et al., Micro blood pressure energy harvester for intracardiac pacemaker. J. Microelectromech. Syst. 23(3), 651–660 (2014)CrossRefGoogle Scholar
  23. 23.
    Z. Lin Wang, Self-powered nanotech, in Scientific American, pp. 82–87 (2008)Google Scholar
  24. 24.
    R. Jagadeesan, Y. Guo, Topology selection and efficiency improvement of inductive power links. IEEE Trans. Antennas Propag. 60(10), 4846–4854 (2012)CrossRefGoogle Scholar
  25. 25.
    W. Zhang et al., Analysis and comparison of secondary series- and parallel-compensated inductive power transfer system operating for optimal efficiency and load-independent voltage-transfer ratio. IEEE Trans. Power Electron. 29(6), 2979–2990 (2014)CrossRefGoogle Scholar
  26. 26.
    T. Le et al., Piezoelectric micro-power generation interface circuits, IEEE J. Solid State Circuits, 41(6), 1411–1420 (2006)Google Scholar
  27. 27.
    S. Mandal, R. Sarpeshkar, Low-power CMOS rectifier design for RFID applications. IEEE TCAS-I Regul. Pap. 54(6), 1177–1188 (2007)Google Scholar
  28. 28.
    P. Si et al., A frequency control method for regulating wireless power to implantable devices. IEEE TBCAS 2(1), 22–29 (2008)Google Scholar
  29. 29.
    M. Kiani et al., A Q-modulation technique for efficient inductive power transmission, IEEE J. Solid State Circuits (2015) (accepted and available online)Google Scholar
  30. 30.
    M.W. Baker, R. Sarpeshkar, Feedback analysis and design of RF power links for low-power bionic systems. IEEE Trans. Biomed. Circuits Syst. 1(1), 28–38 (2007)CrossRefGoogle Scholar
  31. 31.
    M. Kiani et al., Design and optimization of a 3-coil inductive link for efficiency wireless power transmission. IEEE Trans. Biomed. Circuits Syst. 5(6), 579–591 (2011)CrossRefGoogle Scholar
  32. 32.
    A. Sample et al., Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron. 58(2), 544–554 (2011)MathSciNetCrossRefGoogle Scholar
  33. 33.
    M.L. Kung, K.H. Lin, Enhanced analysis and design method of dual-band coil module for near-field wireless power transfer systems. IEEE Trans. Microw. Theory and Tech. 63(3), 821–832 (2015)CrossRefGoogle Scholar
  34. 34.
    Z. Tang et al., Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator. IEEE Trans. Biomed. Eng. 42(5), 524–528 (1995)CrossRefGoogle Scholar
  35. 35.
    S. Mandal, R. Sarpeshkar, Power-efficient impedance-modulation wireless data links for biomedical implants. IEEE Trans. Biomed. Circuits Syst. 2(4), 301–315 (2008)CrossRefGoogle Scholar
  36. 36.
    F. Inanlou, M. Ghovanloo, Wideband near-field data transmission using pulse harmonic modulation, IEEE Trans. Circuits Syst. I Regul. Pap. 58(1), 186–195 (2011)MathSciNetCrossRefGoogle Scholar
  37. 37.
    M. Kiani, M. Ghovanloo, A 13.56 Mbps pulse delay modulation based transceiver for simultaneous near-field data and power transmission. IEEE Trans. Biomed. Circuits Syst. 9(1), 1–11 (2015)CrossRefGoogle Scholar
  38. 38.
    K. Fotopoulou, B. Flynn, Wireless power transfer in loosely coupled links: Coil misalignment model. IEEE Trans. Magnet. 47(2), 416–430 (2011)CrossRefGoogle Scholar
  39. 39.
    J.S. Ho, A.S. Poon, Midfield wireless powering for implantable systems. Proc. IEEE 101(6), 1369–1378 (2013)CrossRefGoogle Scholar
  40. 40.
    S. Leung, D. Lam, Performance of printed polymer-based RFID antenna on curvilinear surface. IEEE Transactions on Electronics Packaging Manufacturing 30(3), 200–205 (2007)CrossRefGoogle Scholar
  41. 41.
    G. Fotheringham et al., Parameterization of bent coils on curbed flexible surface substrates for RFID applications, in 59th Conference on Electronic Components and Technology (2009)Google Scholar
  42. 42.
    U.M. Jow, M. Ghovanloo, Modeling and optimization of printed spiral coils in air, saline, and muscle tissue environments. IEEE Trans. Biomed. Circuits Syst. 3(5), 339–347 (2009)CrossRefGoogle Scholar
  43. 43.
    ICNIRP: Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz), Health Phys. 74, 494–522 (1998)Google Scholar
  44. 44.
    A. Christ et al., Evaluation of wireless resonant power transfer system with human electromagnetic exposure limits. IEEE Trans. Electromagn. Compat. 55(2), 265–274 (2013)Google Scholar
  45. 45.
    T. Sunohara et al., Induced field and SAR in human body model due to wireless power transfer system with induction coupling, in IEEE International Symposium on Electromagnetic Compatibility, Tokyo (2014)Google Scholar
  46. 46.
    A. Al-Kalbani et al., Electromagnetic interference in brain implants using multiple coils: biosafety and data communication performance. IEEE Trans. Electromagn. Compat. 56(2), 490–493 (2014)CrossRefGoogle Scholar
  47. 47.
    C. Sauer et al., Power harvesting and telemetry in CMOS for implanted devices, IEEE Trans. Circuits Syst I Regul Pap. 52(12), 2605–2613 (2005)CrossRefGoogle Scholar
  48. 48.
    B. Lenaerts, R. Puers, An inductive power link for a wireless endoscope. Biosens. Bioelectron. 22, 1390–1395 (2007)CrossRefGoogle Scholar
  49. 49.
    K. M. Silay et al., Load optimization of an inductive power link for remote powering of biomedical implants, in IEEE International Symposium on Circuits and Systems, pp. 533–536 (2009)Google Scholar
  50. 50.
    Y. Hu, M. Sawan, A fully integrated low-power BPSK demodulator for implantable medical devices, IEEE Trans. Circuits Syst. I Regul. Pap. 52(12), 2552–2562 (2005)CrossRefGoogle Scholar
  51. 51.
    M. Piedade et al., Visual neuroprosthesis: a non invasive system for stimulating the cortex, IEEE Trans. Circuits Syst. I Regul. Pap. 52(12), 2648–2662 (2005)CrossRefGoogle Scholar
  52. 52.
    R.A. Bercich et al., Far-field RF powering of implantable devices: safety considerations. IEEE Trans. Biomed. Eng. 60(8), 2107–2112 (2013)CrossRefGoogle Scholar
  53. 53.
    A. Ba et al., A 0.33 nJ/bit IEEE802.15.6/proprietary MICS/ISM wireless transceiver with scalable data rate for medical implantable applications. IEEE J. Biomed. Health Inf. 19(3), 920–929 (2015)CrossRefGoogle Scholar
  54. 54.
    R.E. Diaz, T. Sebastian, Electromagnetic limits to radiofrequency (RF) neuronal telemetry. Nat. Sci. Rep. 3, 3535 (2013)CrossRefGoogle Scholar
  55. 55.
    E.Y. Chow et al., Implantable RF medical devices. IEEE Microwave Mag. 14(4), 64–73 (2013)MathSciNetCrossRefGoogle Scholar
  56. 56.
    C.A. Balanis, Antenna Theory: Analysis and Design, 3rd edn. (Wiley, New Jersey, 2005)Google Scholar
  57. 57.
    I. Singh, V.S. Tripathi, Micro strip patch antenna and its applications: a survey. Int. J. Comput. Appl. Technol. 2(5), 1595–1599 (2011)Google Scholar
  58. 58.
    A. Kumar et al., Performance analysis of different feeding techniques. Int. J. Emerg. Technol. Adv. Eng. 3(3), 884–890 (2013)Google Scholar
  59. 59.
    P. Anacleto et al., Micro antennas for implantable medical devices, in IEEE 3rd Portuguese Meeting in Bioengineering, pp. 1–4 (2013)Google Scholar
  60. 60.
    C.L. Yang et al., Low-invasive implantable devices of low-power consumption using high-efficiency antennas for cloud health care. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2(1), 14–23 (2012)CrossRefGoogle Scholar
  61. 61.
    L.Y. Chen et al., Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 5, 5028 (2013)CrossRefGoogle Scholar
  62. 62.
    M. Shakib et al., Design of a tri-band implantable antenna for wireless telemetry applications, in IEEE International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications, pp. 1–3 (2014)Google Scholar
  63. 63.
    D.D. Karnaushenko et al., Compact helical antenna for smart implant applications. Nat. Publ. Group Asia Mater. 7, e188 (2015)Google Scholar
  64. 64.
    S.Y. Wu et al., 3D-printed microelectronics for integrated circuitry and passive wireless sensors. Nat. Microsyst. Nanoeng. 1, 15013 (2015)CrossRefGoogle Scholar
  65. 65.
    N. Shariati et al., Multi-service highly sensitive rectifier for enhanced RF energy scavenging. Nat. Sci. Rep. 5, 9655 (2015)CrossRefGoogle Scholar
  66. 66.
    J. Walk et al., Improvements of wireless communication and energy harvesting aspects for implantable sensor interfaces by using the split frequencies concept, in IEEE Radio and Wireless Symposium, pp. 406–409 (2011)Google Scholar
  67. 67.
    D.W. Gulik, B.C. Towe, Characterization of simple wireless neurostimulators and sensors, in IEEE 36th Annual International Conference of the Engineering in Medicine and Biology Society, pp. 3130–3133 (2014)Google Scholar
  68. 68.
    R. Ahmed et al., An RFID front end for smart biological sensing, in IEEE 55th International Midwest Symposium on Circuits and Systems, pp. 778–781 (2012)Google Scholar
  69. 69.
    E.Y. Chow et al., Wireless powering and the study of RF propagation through ocular tissue for development of implantable sensors. IEEE Trans. Antennas Propag. 59(6), 2379–2387 (2011)CrossRefGoogle Scholar
  70. 70.
    K. Okabe et al., A thin film flexible antenna with CMOS rectifier chip for RF-powered implantable neural interfaces, in IEEE 18th International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 1751–1754 (2015)Google Scholar
  71. 71.
    E.Y. Chow et al., Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent. IEEE Trans. Biomed. Eng. 57(6), 1487–1496 (2010)CrossRefGoogle Scholar
  72. 72.
    P. Cong et al., A wireless and batteryless 10-bit implantable blood pressure sensing microsystem with adaptive RF powering for real-time laboratory mice monitoring. IEEE J. Solid State Circuits 44(12), 3631–3644 (2009)CrossRefGoogle Scholar
  73. 73.
    D. Venuto, J. Rabaey, RFID transceiver for wireless powering brain implanted microelectrodes and backscattered neural data collection. Microelectron. J. 45, 1585–1594 (2014)CrossRefGoogle Scholar
  74. 74.
    M. Arsalan et al., A 5.2 GHz, 0.5 mW RF powered wireless sensor with dual on-chip antennas for implantable intraocular pressure monitoring, in IEEE MTT-S International Microwave Symposium Digest (2013)Google Scholar
  75. 75.
    J. Mao et al., A subgigahertz UWB transmitter with wireless clock harvesting for RF-powered applications, IEEE Trans. Circuits Sys. II Express Briefs 61(5), 314–318 (2014)CrossRefGoogle Scholar
  76. 76.
    C. M. Boutry et al., RF conductivity of biodegradable conductive polymers used for a new generation of partially/fully resorbable wireless implantable sensors, in IEEE 25th International Conference on Micro Electro Mechanical Systems, pp. 468–471 (2012)Google Scholar
  77. 77.
    S.G. Kim et al., A highly sensitive and label free biosensing platform for wireless sensor node system. Biosens. Bioelectron. 50, 362–367 (2013)CrossRefGoogle Scholar
  78. 78.
    N.Y. Kim et al., A reusable robust radio frequency biosensor using microwave resonator by integrated passive device technology for quantitative detection of glucose level. Biosens. Bioelectron. 67, 687–693 (2015)CrossRefGoogle Scholar
  79. 79.
    R. Melik et al., Metamaterial-based wireless RF-MEMS strain sensors, in IEEE Sensors, pp. 2173–2176 (2010)Google Scholar
  80. 80.
    J.H. Lee et al., High temperature, high power piezoelectric composite transducers. Sensors 14, 14526–14552 (2014)CrossRefGoogle Scholar
  81. 81.
    R. Calio et al., Piezoelectric energy harvesting solutions. Sensors 14, 4755–4790 (2014)CrossRefGoogle Scholar
  82. 82.
    T.L. Szabo, Diagnostic Ultrasound Imaging: Inside Out (Elsevier Inc, London, 2004)Google Scholar
  83. 83.
    Z. Suo, Theory of dielectric elastomers. Acta Mechanica Solida 23(6), 549–578 (2010)CrossRefGoogle Scholar
  84. 84.
    S. Ozeri, D. Shmilovitz, Simultaneous backward data transmission and power harvesting in an ultrasonic transcutaneous energy transfer link employing acoustically dependent electric impedance modulation. Ultrasonics 54, 1929–1937 (2014)CrossRefGoogle Scholar
  85. 85.
    A. Denisov, E. Yeatman, Ultrasonic vs. inductive power delivery for miniature biomedical implants, in IEEE International Conference on Body Sensor Networks, pp. 84–89 (2010)Google Scholar
  86. 86.
    Y. Zhu et al., Ultrasonic energy transmission and conversion using a 2-D MEMS resonator. IEEE Electron Dev. Lett. 31(4), 374–376 (2010)CrossRefGoogle Scholar
  87. 87.
    A. Fowler et al., An omnidirectional MEMS ultrasonic energy harvester for implanted devices. J. Microelectromech. Sys. 23(6), 1454–1462 (2014)CrossRefGoogle Scholar
  88. 88.
    Q. He et al., MEMS-based ultrasonic transducer as the receiver for wireless power supply of the implantable microdevices. Sens. Actuators A 219, 65–72 (2014)CrossRefGoogle Scholar
  89. 89.
    S. Ozeri et al., Ultrasonic transcutaneous energy transfer using a continuous wave 650 kHz Gaussian shagged transmitter. Ultrasonics 50, 666–674 (2010)CrossRefGoogle Scholar
  90. 90.
    S. Ozeri, D. Shmilovitz, Ultrasonic transcutaneous energy transfer for powering implanted devices. Ultrasonics 50, 556–566 (2010)CrossRefGoogle Scholar
  91. 91.
    M. Xu, L.V. Wang, Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77, 041101 (2006)CrossRefGoogle Scholar
  92. 92.
    K.W. Dongen, W.M. Wright, A forward model and conjugate gradient inversion technique for low-frequency ultrasonic imaging. J. Acoust. Soc. Am. 120(4), 2086–2095 (2006)CrossRefGoogle Scholar
  93. 93.
    F. Mazzilli et al., Ultrasound energy harvesting system for deep implanted-medical-devices (IMDs), in IEEE International Symposium on Circuits and Systems, pp. 2865–2868 (2012)Google Scholar
  94. 94.
    Y. Liu et al., Active piezoelectric energy harvesting: general principle and experimental demonstration. J. Int. Mater. Sys. Struct. 20, 575–585 (2009)CrossRefGoogle Scholar
  95. 95.
    J. Qiu et al., Comparison between four piezoelectric energy harvesting circuits. Front. Mech. Eng. China 4(2), 153–159 (2009)CrossRefGoogle Scholar
  96. 96.
    D. Guyomar et al., Energy harvesting from ambient vibrations and heat. J. Intell. Mater. Sys. Struct. 20, 609–623 (2009)CrossRefGoogle Scholar
  97. 97.
    J. Park et al., The effect of switch triggering offset and switch on-time duration on harvested power in synchronized switch harvesting on inductor. Int. J. Smart Home 7(3), 207–218 (2013)Google Scholar
  98. 98.
    A. Nechibvute et al., Piezoelectric energy harvesting using synchronized switching techniques. Int. J. Eng. Technol. 2(6), 936–946 (2012)Google Scholar
  99. 99.
    M.L. Navaii et al., An ultra-low power RF interface for wireless-implantable microsystems. Microelectron. J. 43, 848–856 (2012)CrossRefGoogle Scholar
  100. 100.
    Y. Ammar, S. Basrour, Non-linear techniques for increasing harvesting energy from piezoelectric and electromagnetic micro-power-generators, in Dans Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, Stresa, Italy (2006)Google Scholar
  101. 101.
    A. Sanni et al., Inductive and ultrasonic multi-tier interface for low-power, deeply implantable medical device. IEEE Trans. Biomed. Circuits Sys. 6(4), 297–308 (2012)CrossRefGoogle Scholar
  102. 102.
    L. Cheng et al., Wireless, power-free and implantable nanosystem for resistance-based biodetection. Nano Energy 15, 598–606 (2015)CrossRefGoogle Scholar
  103. 103.
    W.S. Jung et al., High output piezo/triboelectric hybrid generator. Nat. Sci. Rep. 5, 9309 (2015)CrossRefGoogle Scholar
  104. 104.
    D. Seo et al., Neural Dust: An Ultrasonic, Low Power Solution for Chronic Brain-Machine Interfaces (Cornell University Library, Berkeley, 2013)Google Scholar
  105. 105.
    G. Wild, S. Hinckley, Acoustic transmissions for wireless communications and power supply in biomedical devices, in Proceedings of 20th International Congress on Acoustics (2010)Google Scholar
  106. 106.
    J. Charthad et al., A mm-sized implantable medical device (IMD) with ultrasonic power transfer and a hybrid bi-directional data link. IEEE J. Solid-State Circuits 50(8), 1741–1753 (2015)CrossRefGoogle Scholar
  107. 107.
    B.M. Rosa, G.Z. Yang, Active implantable sensor powered by ultrasounds with application in the monitoring of physiological parameters for soft tissue, in IEEE Conference on Body Sensor Networks (2016)Google Scholar
  108. 108.
    I. Voiculescu, A.N. Nordin, Acoustic wave based MEMS devices for biosensing applications. Biosens. Bioelectron. 33, 1–9 (2012)CrossRefGoogle Scholar
  109. 109.
    N. Gopalsami et al., SAW microsensor brain implant for prediction and monitoring of seizures. IEEE Sens. J. 7(7), 977–982 (2007)CrossRefGoogle Scholar
  110. 110.
    G. Martin et al., Measuring the inner body temperature using a wireless temperature saw-sensor-based system, in IEEE Conference: Ultrasonics Symposium, 4 (2005)Google Scholar
  111. 111.
    X. Ye et al., Studies of a high-sensitive surface acoustic wave sensor for passive wireless blood pressure measurement. Sens. Actuators A 169, 74–82 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Hamlyn CentreImperial College LondonLondonUK

Personalised recommendations