Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter addresses the properties of nanostructured materials considered as statistical ensembles of nanostructures. Emphasis is put on size and confinement effects, although enhancements in surface and interface properties are mentioned. After a survey and a summary of basic definitions and concepts in the introductory Sect. 28.1, the properties associated with electronic confinement are addressed in Sect. 28.2 . Electronic confinement affects the spectral properties, i. e., light absorption and luminescence, mainly through quantum size effects, and the electrical conduction properties through the Coulomb blockade. Both two-dimensional systems (quantum wells) and zero-dimensional systems (quantum dots) are reviewed. Particular attention is drawn to semiconductor-doped matrices. The effects associated with confinement of electromagnetic fields are treated in Sect. 28.3 . Numerical relationships and data for plasmon excitations of various metal nanoparticles can be found in this section. Magnetic nanostructures are addressed in Sect. 28.4 . The two main applications of nanostructured magnetic materials, namely spin electronics, or spintronics, and ultrahigh-density data storage media, are treated. Finally, we list and briefly describe in Sect. 28.5 some generic techniques for the preparation of nanostructured materials, organized into the following groups of methods: molecular-beam epitaxy (GlossaryTerm

MBE

), metal-organic chemical vapor deposition (GlossaryTerm

MOCVD

), nanolithography, nanocrystal growth in matrices, and ex-situ synthesis of clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Vajtai (Ed.): Springer Handbook of Nanomaterials (Springer, Dordrecht, Heidelberg, London, New York 2013)

    Google Scholar 

  2. P. Moriarty: Nanostructured materials, Rep. Prog. Phys. 64, 297–381 (2001)

    Article  CAS  Google Scholar 

  3. M. Milun, P. Pervan, D.P. Woodruff: Quantum well structures in thin metal films: Simple model physics in reality?, Rep. Prog. Phys. 65, 99–141 (2002)

    Article  CAS  Google Scholar 

  4. S.A. Lindgren, S. Valden: Electron-energy-band determination by photoemission from overlayer states, Phys. Rev. Lett. 61, 2894–2897 (1988)

    Article  CAS  Google Scholar 

  5. T. Miller, A. Samsavar, G.E. Franklin, T.-C. Chiang: Quantum-well states in a metallic system: Ag on Au(111), Phys. Rev. Lett. 61, 1404–1407 (1988)

    Article  CAS  Google Scholar 

  6. J.J. Paggel, T. Miller, T.C. Chiang: Quantum-well states as Fabry-Pérot modes in a thin-film electron interferometer, Science 283, 1709–1711 (1999)

    Article  CAS  Google Scholar 

  7. S. Bjornholm, J. Borggren, O. Echt, K. Hansen, J. Pedersen, H.D. Rasmussen: The influence of shells, electron thermodynamics, and evaporation on the abundance spectra of large sodium metal clusters, Z. Phys. D 19, 47 (1991)

    Google Scholar 

  8. W. Ekardt: Work function of small metal particles: Self-consistent spherical jellium-background model, Phys. Rev. B 29, 1558–1564 (1984)

    Article  CAS  Google Scholar 

  9. J.H. Cho, K.S. Kim, C.T. Chan, Z.Y. Zhang: Oscillatory energetics of flat Ag films on MgO(001), Phys. Rev. B 63, 113408 (2001)

    Article  CAS  Google Scholar 

  10. M.S. Hybertsen: Mechanism for light emission from nanoscale silicon. In: Porous Silicon Science and Technology, ed. by J.-C. Vial, J. Derrien (Les éditions de physique, Les Ulis 1995) p. 67

    Chapter  Google Scholar 

  11. L.T. Canham: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett. 57, 1046–1048 (1990)

    Article  CAS  Google Scholar 

  12. V. Lehmann, U. Gösele: Porous silicon formation: A quantum wire effect, Appl. Phys. Lett. 58, 856–858 (1990)

    Article  Google Scholar 

  13. A.I. Belogorokhov, V.A. Karavanskii, A.N. Obraztsov, V.Y. Timoshenko: Intense photoluminescence in porous gallium-phosphide, JETP Letters 60, 274–279 (1994)

    Google Scholar 

  14. A. Anedda, A. Serpi, V.A. Karavanski, I.M. Tiginyanu, V.M. Ichizli: Time-resolved blue and ultraviolet photoluminescence in porous GaP, Appl. Phys. Lett. 67, 3316–3318 (1995)

    Article  CAS  Google Scholar 

  15. J.S. Shor, L. Bemis, A.D. Kurtz, I. Grimberg, B.Z. Weiss, M.F. Macmillian, W.J. Choyke: Characterization of nanocrystallites in porous p-type 6H-SiC, J. Appl. Phys. 76, 4045–4049 (1994)

    Article  CAS  Google Scholar 

  16. D.J. Lockwood, Z.H. Lu, J.-M. Baribeau: Quantum confined luminescence in Si/SiO2 superlattices, Phys. Rev. Lett. 76, 539–541 (1996)

    Article  CAS  Google Scholar 

  17. R.W. Collins, P.M. Fauchet, I. Shimizu, J.-C. Vial, T. Shimada, A.P. Alivisatos (Eds.): Advances in Microcrystalline and Nanocrystalline Semiconductors, Vol. 452 (Materials Research Society, Pittsburgh 1997)

    Google Scholar 

  18. N.M. Park, T.S. Kim, S.J. Park: Band gap engineering of amorphous silicon quantum dots for light-emitting diodes, Appl. Phys. Lett. 78, 2575–2577 (2001)

    Article  CAS  Google Scholar 

  19. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo: Optical gain in silicon nanocrystals, Nature 408, 440–444 (2000)

    Article  CAS  Google Scholar 

  20. P. Ball: Let there be light, Nature 409, 974–976 (2001)

    Article  CAS  Google Scholar 

  21. L.E. Brus: Electron–electron and electron–hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, J. Chem. Phys. 80, 4403–4409 (1984)

    Article  CAS  Google Scholar 

  22. Y. Kayanuma: Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape, Phys. Rev. B 38, 9797–9805 (1988)

    Article  CAS  Google Scholar 

  23. L. Al: Efros, A. L. Efros: Interband absorption of light in a semiconductor sphere, Sov. Phys. Semicond. 16, 772–775 (1982)

    Google Scholar 

  24. A. Shik: Quantum Wells, Physics and Electronics of Two-Dimensional Systems (World Scientific, Singapore 1997), Chap. 4.4

    Google Scholar 

  25. S. Glutsch, D.S. Chemla: Transition to one-dimensional behavior in the optical absorption of quantum-well wires, Phys. Rev. B 53, 15902–15908 (1996)

    Article  CAS  Google Scholar 

  26. D.J. Norris, A. Sacra, C.B. Murray, M.G. Bawendi: Measurement of the size-dependent hole spectrum in CdSe quantum dots, Phys. Rev. Lett. 72, 2612–2615 (1994)

    Article  CAS  Google Scholar 

  27. G. Banfi, V. Degiorgio: Neutron scattering investigation of the structure of semiconductor-doped glasses, J. Appl. Phys. 74, 6925–6935 (1993)

    Article  CAS  Google Scholar 

  28. M.H. Yukselici: Growth kinetics of CdSe nanoparticles in glass, J. Phys. Condens. Matter 14, 1153–1162 (2002)

    Article  CAS  Google Scholar 

  29. C. Weisbuch, B. Vinter: Quantum Semiconductor Structures (Academic Press, Boston 1991), Chap. 3

    Google Scholar 

  30. B. Zhao, A. Yariv: Quantum well semiconductor lasers. In: Semiconductor Lasers I: Fundamentals, ed. by E. Kapon, P.L. Kelley (Academic Press, San Diego 1999), Chap. 1

    Google Scholar 

  31. E. Kapon: Quantum wire and quantum dot lasers. In: Semiconductor Lasers I: Fundamentals, ed. by E. Kapon, P.L. Kelley (Academic Press, San Diego 1999), Chap. 4

    Google Scholar 

  32. V.I. Klimov, A.A. Mikhailovsky, S. Xu, A. Malko, J.A. Hollingsworth, C.A. Leatherdale, H.J. Eisler, M.G. Bawendi: Optical gain and stimulated emission in nanocrystal quantum dots, Science 290, 314–317 (2000)

    Article  CAS  Google Scholar 

  33. H.J. Eisler, V.C. Sundar, M.G. Bawendi, M. Walsh, H.I. Smith, V. Klimov: Color-selective semiconductor nanocrystal laser, Appl. Phys. Lett. 80, 4614–4616 (2002)

    Article  CAS  Google Scholar 

  34. P.T. Guerreiro, S. Ten, N.F. Borrelli, J. Butty, G.E. Jabbour, N. Peyghambarian: PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr:forsterite laser, Appl. Phys. Lett. 71, 1595–1597 (1997)

    Article  CAS  Google Scholar 

  35. K. Wundke, S. Potting, J. Auxier, A. Schulzgen, N. Peyghambarian, N.F. Borrelli: PbS quantum-dot-doped glasses for ultrashort-pulse generation, Appl. Phys. Lett. 76, 10–12 (2000)

    Article  CAS  Google Scholar 

  36. S. Schmitt-Rink, D.S. Chemla, D.A.B. Miller: Linear and nonlinear optical properties of semiconductor quantum wells, Adv. Phys. 38, 89–188 (1989)

    Article  CAS  Google Scholar 

  37. F. Devaux, F. Dorgeuille, A. Ougazzaden, F. Huet, M. Carre, A. Carenco, M. Henry, Y. Sorel, J.-F. Kerdiles, E. Jeanney: 20 Gbit/s operation of a high-efficiency InGaAsP/InGaAsP MQW electroabsorption modulator with 1.2-V drive voltage, IEEE Photonics Technol. Lett. 5, 1288–1990 (1993)

    Article  Google Scholar 

  38. D. Delprat, A. Ramdane, A. Ougazzaden, H. Nakajima, M. Carre: Integrated multiquantum well distributed feedback laser-electroabsorption modulator with a negative chirp for zero bias voltage, Electron. Lett. 33, 53–55 (1997)

    Article  Google Scholar 

  39. D. Donovan, J.F. Andress: Lattice Vibrations (Chapman Hall, London 1971)

    Google Scholar 

  40. J.F. DiTusa, K. Lin, M. Park, M.S. Isaacson, J.M. Parpia: Role of phonon dimensionality on electron–phonon scattering rates, Phys. Rev. Lett. 68, 1156–1159 (1992)

    Article  CAS  Google Scholar 

  41. S.H. Song, W. Pan, D.C. Tsui, Y.H. Xie, D. Monroe: Energy relaxation of two-dimensional carriers in strained Ge/Si0.4Ge0.6 and Si/Si0.7Ge0.3 quantum wells: Evidence for two-dimensional acoustic phonons, Appl. Phys. Lett. 70, 3422–3424 (1997)

    Article  CAS  Google Scholar 

  42. V. Narayanamurti, H.L. Störmer, M.A. Chin, A.C. Gossard, W. Wiegmann: Selective transmission of high-frequency phonons by a superlattice: The dielectric phonon filter, Phys. Rev. Lett. 43, 2012–2016 (1979)

    Article  CAS  Google Scholar 

  43. P.V. Santos, L. Ley, J. Mebert, O. Koblinger: Frequency gaps for acoustic phonons in a-Si:H/a-SiNx:H superlattices, Phys. Rev. B 36, 4858–4867 (1987)

    Article  CAS  Google Scholar 

  44. M. Fujii, T. Nagareda, S. Hayashi, K. Yamamoto: Low-frequency Raman scattering from small silver particles embedded in SiO2 thin films, Phys. Rev. B 44, 6243–6248 (1991)

    Article  CAS  Google Scholar 

  45. L. Saviot, B. Champagnon, E. Duval, A.I. Ekimov: Size-selective resonant Raman scattering in CdS doped glasses, Phys. Rev. B 57, 341–346 (1998)

    Article  CAS  Google Scholar 

  46. H. Lamb: On the vibrations of an elastic sphere, Proc. Math. Soc. London 13, 187 (1882)

    Google Scholar 

  47. S. Rufo, M. Dutta, M.A. Stroscio: Acoustic modes in free and embedded quantum dots, J. Appl. Phys. 93, 2900–2905 (2003)

    Article  CAS  Google Scholar 

  48. N. Del Fatti, C. Voisin, F. Chevy, F. Vallee, C. Flytzanis: Coherent acoustic mode oscillation and damping in silver nanoparticles, J. Chem. Phys. 110, 11484–11487 (1999)

    Article  Google Scholar 

  49. T.D. Krauss, F.W. Wise: Coherent acoustic phonons in a semiconductor quantum dot, Phys. Rev. Lett. 79, 5102–5105 (1997)

    Article  CAS  Google Scholar 

  50. M. Ikezawa, T. Okuno, Y. Masumoto, A.A. Lipovskii: Complementary detection of confined acoustic phonons in quantum dots by coherent phonon measurement and Raman scattering, Phys. Rev. B 64, 201315 (2001)

    Article  CAS  Google Scholar 

  51. S. Schmitt-Rink, D.A.B. Miller, D.S. Chemla: Theory of the linear and nonlinear optical properties of semiconductor microcrystallites, Phys. Rev. B 35, 8113–8125 (1987)

    Article  CAS  Google Scholar 

  52. D. Kovalev, H. Heckler, M. Ben-Chorin, G. Polisski, M. Schwartzkopff, F. Koch: Breakdown of the k-conservation rule in Si nanocrystals, Phys. Rev. Lett. 81, 2803–2806 (1998)

    Article  CAS  Google Scholar 

  53. M.S. Hybertsen: Absorption and emission of light in nanoscale silicon structures, Phys. Rev. Lett. 72, 1514–1517 (1994)

    Article  CAS  Google Scholar 

  54. A. Arbouet, C. Voisin, D. Christofilos, P. Langot, N. Del Fatti, F. Vallee, J. Lerme, G. Celep, E. Cottancin, M. Gaudry, M. Pellarin, M. Broyer, M. Maillard, M.-P. Pileni, M.A. Treguer: Electron–phonon scattering in metal clusters, Phys. Rev. Lett. 90, 177401 (2003)

    Article  CAS  Google Scholar 

  55. N.F. Mott: Conduction in non-crystalline materials III. Localized states in a pseudogap and near extremities of conduction and valence bands, Philos. Mag. 19, 835–852 (1969)

    Article  CAS  Google Scholar 

  56. B.F. Levine: Quantum-well infrared photodetectors, J. Appl. Phys. 74, R1–R81 (1993)

    Article  CAS  Google Scholar 

  57. K.K. Choi, B.F. Levine, R.J. Malik, J. Walker, C.G. Bethea: Periodic negative conductance by sequential resonant tunneling through an expanding high-field superlattice domain, Phys. Rev. B 35, 4172–4175 (1987)

    Article  CAS  Google Scholar 

  58. L. Esaki, R. Tsu: Superlattice and negative differential conductivity in semiconductors, IBM J. Res. Dev. 14, 61–65 (1970)

    Article  CAS  Google Scholar 

  59. L. Esaki, L.L. Chang: New transport phenomenon in a semiconductor superlattice, Phys. Rev. Lett. 33, 495–498 (1974)

    Article  CAS  Google Scholar 

  60. N.F. Mott: Conduction in Non-Crystalline Materials, Oxford Science Publications, 2nd edn. (Clarendon, Oxford 1993)

    Google Scholar 

  61. P. Sheng, J. Klafter: Hopping conductivity in granular disordered systems, Phys. Rev. B 27, 2583–2586 (1983)

    Article  Google Scholar 

  62. M. Fujii, T. Kita, S. Hayashi, K. Yamamoto: Current-transport properties of Ag-SiO2 and Au-SiO2 composite films: Observation of single-electron tunnelling and random telegraph signals, J. Phys. Condens. Matter 9, 8669–8677 (1997)

    Article  CAS  Google Scholar 

  63. R.P. Andres, T. Bein, M. Dorogi, S. Feng, J.I. Henderson, C.P. Kubiak, W. Mahoney, R.G. Osifchin, R. Reifenberger: Coulomb staircase at room temperature in a self-assembled molecular nanostructure, Science 272, 1323–1325 (1996)

    Article  CAS  Google Scholar 

  64. M.A. Kastner: The single-electron transistor, Rev. Mod. Phys. 64, 849–858 (1992)

    Article  Google Scholar 

  65. A.L. Efros, B.I. Shklovskii: Coulomb gap and low-temperature conductivity of disordered systems, J. Phys. C Solid State Phys. 8, L49–L51 (1975)

    Article  CAS  Google Scholar 

  66. P.E. Trudeau, A. Escorcia, A.A. Dhirani: Variable single electron charging energies and percolation effects in molecularly linked nanoparticle films, J. Chem. Phys. 119, 5267–5273 (2003)

    Article  CAS  Google Scholar 

  67. A. Taleb, F. Silly, A.O. Gusev, F. Charra, M.-P. Pileni: Electron transport properties of nanocrystals: Isolated, and ‘‘supra’’-crystalline phases, Adv. Mater. 12, 633–637 (2000)

    Article  CAS  Google Scholar 

  68. J. Fick, A. Martucci, M. Guglielmi, J. Shell: Nonlinear optical properties of semiconductor-doped sol–gel waveguides, Fiber Integr. Opt. 19, 43–56 (2000)

    Article  CAS  Google Scholar 

  69. U. Kreibig, M. Vollmer: Optical Properties of Metal Clusters (Springer, Berlin, Heidelberg 1995) p. 50

    Book  Google Scholar 

  70. K. Kolwas, S. Demianiuk, M. Kolwas: Optical excitation of radius-dependent plamon resonances in large metal clusters, J. Phys. B 29, 4761–4770 (1996)

    CAS  Google Scholar 

  71. S. Link, Z.L. Wang, M.A. El-Sayed: Alloy formation on gold–silver nanoparticles and the dependence of the plasmon absorption on their composition, J. Phys. Chem. B 103, 3529–3533 (1999)

    Article  CAS  Google Scholar 

  72. J.A. Creighton, D.G. Eadon: Ultraviolet-visible spectra of the colloidal metallic elements, J. Chem. Soc. Faraday Trans. 87, 3881–3891 (1991)

    Article  CAS  Google Scholar 

  73. F. Hache, D. Ricard, C. Flytzanis: Optical nonlinearities of small metal nanoperticles: Surface-mediated resonance and quantum size effects, J. Opt. Soc. Am. B 3, 1647–1655 (1986)

    Article  CAS  Google Scholar 

  74. R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, C.A. Mirkin: Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science 277, 1078–1081 (1997)

    Article  CAS  Google Scholar 

  75. P.E. Batson: Surface plasmon coupling in clusters of small spheres, Phys. Rev. Lett. 49, 936–940 (1982)

    Article  CAS  Google Scholar 

  76. J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, C. Girard: Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles, Phys. Rev. Lett. 82, 2590–2593 (1999)

    Article  CAS  Google Scholar 

  77. F. Silly, A.O. Gusev, A. Taleb, F. Charra, M.P. Pileni: Coupled plasmon modes in an ordered hexagonal monolayer of metal nanoparticles: A direct observation, Phys. Rev. Lett. 84, 5840–5843 (2000)

    Article  CAS  Google Scholar 

  78. S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, H.A. Atwater: Plasmonics – a route to nanoscale optical devices, Adv. Mater. 13, 15 (2001)

    Article  Google Scholar 

  79. R. Mayoral, J. Requena, J.S. Moya, C. Lopez, A. Cintas, H. Miguez, F. Meseguer, L. Vazquez, M. Holgado, A. Blanco: 3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure, Adv. Mater. 9, 257–260 (1997)

    Article  CAS  Google Scholar 

  80. J.V. Sanders: Colour of precious opal, Nature 204, 1151–1153 (1964)

    Article  Google Scholar 

  81. E. Yablonovitch: Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  CAS  Google Scholar 

  82. S. John: Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  CAS  Google Scholar 

  83. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett. 61, 2472 (1988)

    Article  CAS  Google Scholar 

  84. P. Grünberg, R. Shreiber, Y. Pang, M.B. Brodsky, H. Sowers: Layered magnetic structures: Evidence for antiferromagnetic coupling of Fe layers across Cr interlayers, Phys. Rev. Lett. 57, 2442 (1986)

    Article  Google Scholar 

  85. R.L. Comstock: Introduction to Magnetism and Magnetic Recording (Wiley, New York 1999)

    Google Scholar 

  86. N.F. Mott: The electrical conductivity of transition metals, Proc. R. Soc. 153, 699 (1935)

    Article  Google Scholar 

  87. J.F. Gregg: Introduction to spin electronics. In: Spin Electronics, Lecture Notes in Physics, Vol. 569, ed. by M. Ziese, M.J. Thornton (Springer, Berlin, Heidelberg 2001)

    Google Scholar 

  88. G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Phys. Rev. B 39, 4828 (1989)

    Article  CAS  Google Scholar 

  89. R. Schad, C.D. Potter, P. Beliën, G. Verbanck, V.V. Moshchalkov, Y. Bruynseraede: Giant magnetoresistance in Fe/Cr superlattices with very thin Fe layers, Appl. Phys. Lett. 64, 3500 (1994)

    Article  CAS  Google Scholar 

  90. A. Bartélémy, A. Fert, F. Petroff: Giant magnetoresistance in magnetic multilayers. In: Handbook of Magnetic Materials, Vol. 12, ed. by K.H.J. Buschow (Elsevier, Amsterdam 1999) pp. 1–96

    Google Scholar 

  91. S.S.P. Parkin, D. Mauri: Spin engineering: Direct determination of the Ruderman–Kittel–Kasuya–Yosida far-field range function in ruthenium, Phys. Rev. B 44, 7131 (1991)

    Article  CAS  Google Scholar 

  92. D.H. Mosca, F. Petroff, A. Fert, P.A. Schroeder, W.P. Pratt, R. Loloee: Oscillatory interlayer coupling and giant magnetoresistance in Co/Cu multilayers, J. Magn. Magn. Mater. 94, L1 (1991)

    Article  CAS  Google Scholar 

  93. W.P. Pratt, S.F. Lee, J.M. Slaughter, R. Loloee, P.A. Schroeder, J. Bass: Perpendicular giant magnetoresistances of Ag/Co multilayers, Phys. Rev. Lett. 66, 3060 (1991)

    Article  CAS  Google Scholar 

  94. A. Fert, L. Piraux: Magnetic nanowires, J. Magn. Magn. Mater. 200, 338 (1999), special issue

    Article  CAS  Google Scholar 

  95. M.A.M. Gijs, M.T. Johnson, A. Reinders, P.E. Huisman, R.J.M. van de Veerdonk, S.K.J. Lenczowski, R.M.J. van Gansewinkel: Perpendicular giant magnetoresistance of Co∕Cu multilayers deposited under an angle on grooved substrates, Appl. Phys. Lett. 66, 1839 (1995)

    Article  CAS  Google Scholar 

  96. A. Barthélémy, A. Fert, J.-P. Contour, M. Bowen, V. Cros, J.M. De Teresa, A. Hamzic, J.C. Faini, J.M. George, J. Grollier, F. Montaigne, F. Pailloux, F. Petroff, C. Vouille: Magnetoresistance and spin electronics, J. Magn. Magn. Mater. 242–245, 68 (2002)

    Article  Google Scholar 

  97. J. Barnas, A. Fuss, R.E. Camley, P. Grünberg, W. Zinn: Novel magnetoresistance effect in layered magnetic structures: Theory and experiment, Phys. Rev. B 42, 8110 (1990)

    Article  CAS  Google Scholar 

  98. B. Dieny, V.S. Speriosu, S.S. Parkin, B.A. Gurney, D.R. Wilhoit, D. Mauri: Giant magnetoresistance in soft ferromagnetic multilayers, Phys. Rev. B 43, 1297 (1991)

    Article  CAS  Google Scholar 

  99. C. Tsang, D.E. Heim, R.E. Fontana, V.S. Speriosu, B.A. Gurney, M.L. Williams: Design, fabrication and testing of spin-valve read heads for high density recording, IEEE Trans. Magn. 30, 3801 (1994)

    Article  CAS  Google Scholar 

  100. W.F. Egelhoff Jr., P.J. Chen, C.J. Powell, D. Parks, G. Serpa, R.D. McMichael, D. Martien, A.E. Berkowitz: Specular electron scattering in metallic thin films, J. Vac. Sci. Technol. B 17, 1702 (1999)

    Article  CAS  Google Scholar 

  101. P.M. Tedrow, R. Meservey: Spin-dependent tunneling into ferromagnetic nickel, Phys. Rev. Lett. 26, 192 (1971)

    Article  CAS  Google Scholar 

  102. P.M. Tedrow, R. Meservey: Spin polarization of electrons tunneling from films of Fe, Co, Ni, and Gd, Phys. Rev. B 7, 318 (1973)

    Article  CAS  Google Scholar 

  103. T. Dimopoulos: Spin polarised tunnel transport in magnetic tunnel junctions: The role of metal/oxide interfaces in the tunnel process, Ph.D. Thesis (University Louis Pasteur, Strasbourg 2002)

    Google Scholar 

  104. T. Miyazaki, N. Tezuka: Giant magnetic tunneling effect in Fe/Al2O3/Fe junction, J. Magn. Magn. Mater. 139, L231 (1995)

    Article  CAS  Google Scholar 

  105. N. Tezuka, T. Miyazaki: Magnetic tunneling effect in Fe/Al2O3/Ni1−xFex junctions, J. Appl. Phys. 79, 6262 (1996)

    Article  Google Scholar 

  106. J.S. Moodera, L.R. Kinder, T.M. Wong, R. Meservey: Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions, Phys. Rev. Lett. 74, 3273 (1995)

    Article  CAS  Google Scholar 

  107. M. Jullière: Tunneling between ferromagnetic films, Phys. Lett. 54, 225 (1975)

    Article  Google Scholar 

  108. J. Nassar, M. Hehn, A. Vaures, F. Petroff, A. Fert: Magnetoresistance of ferromagnetic tunnel junctions with Al2O3 barriers formed by rf sputter etching in Ar/O2 plasma, Appl. Phys. Lett. 73, 698 (1998)

    Article  CAS  Google Scholar 

  109. M. Viret, M. Drouet, J. Nassar, J.P. Contour, C. Fermon, A. Fert: Low-field colossal magnetoresistance in manganite tunnel spin valves, Europhys. Lett. 39, 545 (1997)

    Article  CAS  Google Scholar 

  110. J. Nassar, M. Viret, M. Drouet, J.P. Contour, C. Fermon, A. Fert: Low-field colossal magnetoresistance in manganite tunnel junctions, Mater. Res. Soc. Symp. Proc. 494, 231 (1998)

    Article  CAS  Google Scholar 

  111. M. Bowen, M. Bibes, A. Barthélémy, J.-P. Contour, A. Anane, Y. Lemaître, A. Fert: Nearly total spin polarization in La2∕3Sr1∕3MnO3 from tunneling experiments, Appl. Phys. Lett. 82, 233 (2003)

    Article  CAS  Google Scholar 

  112. T. Obata, T. Manako, Y. Shimakawa, Y. Kubo: Tunneling magnetoresistance at up to 270 K in La0.8Sr0.2MnO3/SrTiO3/La0.8Sr0.2MnO3 junctions with 1.6 nm-thick barriers, Appl. Phys. Lett. 74, 290 (1999)

    Article  CAS  Google Scholar 

  113. S. Gota, J.B. Moussy, M. Henriot, M.J. Guittet, M. Gautier-Soyer: Atomic-oxygen-assisted MBE growth of Fe2O4(111) on α-Al2O3(0001), Surf. Sci. 482–485, 809–816 (2001)

    Article  Google Scholar 

  114. S. Van Dijken, X. Jiang, S.S.P. Parkin: Giant magnetocurrent exceeding 3400% in magnetic tunnel transistors with spin-valve base layers, Appl. Phys. Lett. 83, 951 (2003)

    Article  CAS  Google Scholar 

  115. S.A. Wolf, A.Y. Chtchenlkanova, D.M. Treger: Spintronics: Spin based electronics. In: Handbook of Nanoscience, Engineering and Technology, Electrical Engineering Textbook Series, Vol. 27, ed. by W.A. Goddard III, D.W. Brenner, S.E. Lyshevski, G.J. Iafrate (CRC, Boca Raton 2003), Chap. 8

    Google Scholar 

  116. E.E. Fullerton, D.T. Margulies, M.E. Schabes, M. Carey, B. Gurney, A. Moser, M. Best, G. Zeltzer, K. Rubin, H. Rosen, M. Doerner: Antiferromagnetically coupled magnetic media layers for thermally stable high-density recording, Appl. Phys. Lett. 77, 3806 (2000)

    Article  CAS  Google Scholar 

  117. C. Fermon: Micro- and nanofabrication techniques. In: Spin Electronics, Lecture Notes in Physics, Vol. 569, ed. by M. Ziese, M.J. Thornton (Spinger, Berlin, Heidelberg 2001)

    Chapter  Google Scholar 

  118. S.H. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science 287, 1989–1992 (2000)

    Article  CAS  Google Scholar 

  119. J. Moritz, B. Dieny, J.P. Nozières, S. Landis, A. Lebib, Y. Chen: Domain structure in magnetic dots prepared by nanoimprinting and e-beam lithography, J. Appl. Phys. 91, 7314 (2002)

    Article  CAS  Google Scholar 

  120. J. Moritz, S. Landis, J.C. Toussaint, P. Bayle-Guillemaud, B. Rodmacq, G. Casali, A. Lebib, Y. Chen, J.P. Nozières, B. Dieny: Patterned media made from pre-etched wafers: A promising route toward ultrahigh-density magnetic recording, IEEE Trans. Magn. 38, 1731 (2002)

    Article  CAS  Google Scholar 

  121. S. Landis, B. Rodmacq, B. Dieny, B. Dal’Zotto, S. Tedesco, M. Heitzmann: Domain structure of magnetic layers deposited on patterned silicon, Appl. Phys. Lett. 75, 2473 (1999)

    Article  CAS  Google Scholar 

  122. A. Lebib, Y. Chen, F. Carcenac, E. Cambril, L. Manin, L. Couraud, H. Launois: Tri-layer systems for nanoimprint lithography with an improved process latitude, Microelectron. Eng. 53, 175 (2000)

    Article  CAS  Google Scholar 

  123. S. Landis, B. Rodmacq, B. Dieny: Magnetic properties of Co/Pt multilayers deposited on silicon dot arrays, Phys. Rev. B 62, 12271 (2000)

    Article  CAS  Google Scholar 

  124. X.G. Binning, M. Despont, U. Drechsler, W. Häberle, M. Lutwyche, P. Vettiger, H.J. Mamin, B.W. Chui, T.W. Kenny: Ultrahigh-density atomic force microscopy data storage with erase capability, Appl. Phys. Lett. 74, 1329 (1999)

    Article  Google Scholar 

  125. J.L. Marin, R. Riera, R.A. Rosas: Confined systems and nanostructured materials. In: Nanomaterials. Handbook of Advanced Electronic and Photonic Materials and Devices, Vol. 9, ed. by H.S. Nalwa (Elsevier, Amsterdam 2000) p. 55

    Google Scholar 

  126. J.M. Hartmann, M. Charleux, J.L. Rouviere, H. Mariette: Growth of CdTe/MnTe tilted and serpentine lattices on vicinal surfaces, Appl. Phys. Lett. 70, 1113–1115 (1997)

    Article  CAS  Google Scholar 

  127. P. Soukiassian, F. Semond, A. Mayne, G. Dujardin: Highly stable Si atomic line formation on the β-SiC(100) surface, Phys. Rev. Lett. 79, 2498–2501 (1997)

    Article  CAS  Google Scholar 

  128. D. Leonard, K. Pond, P.M. Petroff: Critical layer thickness for self-assembled InAs islands on GaAs, Phys. Rev. B 50, 11687–11692 (1994)

    Article  CAS  Google Scholar 

  129. S. Rusponi, T. Cren, N. Weiss, M. Epple, P. Buluschek, L. Claude, H. Brune: The remarkable difference between surface and step atoms in the magnetic anisotropy of two-dimensional nanostructures, Nature Mater. 2, 546–551 (2003)

    Article  CAS  Google Scholar 

  130. R. Nötzel, T. Fukui, H. Hasegawa, J. Temmyo, T. Tamamura: Atomic-force microscopy study of strained InGaAs quantum disks self-organizing on GaAs (n11)B substrates, Appl. Phys. Lett. 65, 2854–2856 (1994)

    Article  Google Scholar 

  131. E. Ganz, K. Sattler, J. Clarke: Scanning tunneling microscopy of the local atomic structure of two-dimensional gold and silver islands on graphite, Phys. Rev. Lett. 60, 1856–1859 (1988)

    Article  CAS  Google Scholar 

  132. G.W. Clark, L.L. Kesmodel: Ultrahigh vacuum scanning tunneling microscopy studies of platinum on graphite, J. Vac. Sci. Technol. B 11, 131–136 (1993)

    Article  CAS  Google Scholar 

  133. H. Xu, K.Y.S. Ng: Scanning tunneling microscopy investigation of Co cluster growth and induced surface morphology changes on highly oriented pyrolitic graphite, J. Vac. Sci. Technol. B 13, 2160–2165 (1995)

    Article  CAS  Google Scholar 

  134. H. Xu, K.Y.S. Ng: Surface process and interaction of Mo clusters on highly oriented pyrolytic graphite observed by scanning tunneling microscopy, J. Vac. Sci. Technol. B 15, 186–191 (1997)

    Article  Google Scholar 

  135. A. Piednoir, E. Perrot, S. Granjeaud, A. Humbert, C. Chapon, C.R. Henry: Atomic resolution on small three-dimensional metal clusters by STM, Surf. Sci. 391, 19–26 (1997)

    Article  CAS  Google Scholar 

  136. G. Springholz, V. Holy, M. Pinczolits, G. Bauer: Self-organized growth of three-dimensional quantum-dot crystals with fcc-like stacking and a tunable lattice constant, Science 282, 734–737 (1998)

    Article  CAS  Google Scholar 

  137. M.D. Levenson, N.S. Viswanathan, R.A. Simpson: Improving resolution in photolithography with a phase-shifting mask, IEEE Trans. Electron Devices ED-29, 1812–1836 (1982)

    Google Scholar 

  138. M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman: Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid–liquid system, J. Chem. Soc., Chem. Commun. 7, 801–802 (1994)

    Article  Google Scholar 

  139. R.P. Andres, J.D. Bielefeld, J.I. Henderson, D.B. Janes, V.R. Kolagunta, C.P. Kubiak, W.J. Mahoney, R.G. Osifchin: Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters, Science 273, 1690–1693 (1996)

    Article  CAS  Google Scholar 

  140. A. Taleb, C. Petit, M.P. Pileni: Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: A way to 2D and 3D self-organization, Chem. Mater. 9, 950–959 (1997)

    Article  CAS  Google Scholar 

  141. C.J. Kiely, J. Fink, M. Brust, D. Bethell, D.J. Schiffrin: Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters, Nature 396, 444–446 (1998)

    Article  CAS  Google Scholar 

  142. C.J. Kiely, J. Fink, J.G. Zheng, M. Brust, D. Bethell, D.J. Schiffrin: Ordered colloidal nanoalloys, Adv. Mater. 12, 640 (2000)

    Article  CAS  Google Scholar 

  143. C. Petit, A. Taleb, M.-P. Pileni: Self-organization of magnetic nanosized cobalt particles, Adv. Mater. 10, 259–261 (1998)

    Article  CAS  Google Scholar 

  144. G. Schmid, R. Pfeil, R. Boese, F. Bandermann, S. Meyer, S.G. Calis, J.W.A. Van Der Velden: Au55[P(C6H5)3]12Cl6 – ein Goldcluster ungewöhnlicher Größe, Chem. Ber. 114, 3634–3642 (1981)

    Article  CAS  Google Scholar 

  145. V. Oleshko, V. Volkov, R. Gijbels, W. Jacob, M. Vargaftik, I. Moiseev, G. Vantendeloo: High-resolution electron-microscopy and electron-energy-loss spectroscopy of giant palladium clusters, Z. Phys. D34, 283–291 (1995)

    Google Scholar 

  146. C.B. Murray, D.B. Norris, M.G. Bawendi: Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites, J. Am. Chem. Soc. 115, 8706–8715 (1993)

    Article  CAS  Google Scholar 

  147. C.B. Murray, C.R. Kagan, M.G. Bawendi: Self-organization of CdSe nanocrystallites into 3-dimensional quantum-dot superlattices, Science 270, 1335–1338 (1995)

    Article  CAS  Google Scholar 

  148. M.A. Olshavsky, A.N. Goldstein, A.P. Alivisatos: Organometallic synthesis of GaAs crystallites exhibiting quantum confinement, J. Am. Chem. Soc. 112, 9438–9439 (1990)

    Article  CAS  Google Scholar 

  149. C. Binns: Nanoclusters deposited on surfaces, Surf. Sci. Rep. 44, 1–49 (2001)

    Article  CAS  Google Scholar 

  150. W.A. De Heer: The physics of simple metal clusters: Experimental aspects and simple models, Rev. Mod. Phys. 65, 611 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Charra, F., Gota-Goldmann, S., Warlimont, H. (2018). Nanostructured Materials. In: Warlimont, H., Martienssen, W. (eds) Springer Handbook of Materials Data. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-69743-7_28

Download citation

Publish with us

Policies and ethics