Skip to main content

Refractory Metals and Refractory Metal Alloys

  • Chapter
Springer Handbook of Materials Data

Part of the book series: Springer Handbooks ((SHB))

Abstract

Refractory metals belong to the 5th and 6th group of the periodic system of elements and have a melting point above 2000C. Examples are Nb, Ta, Mo and W.

This chapter provides an overview of this class of materials. After a review of different production routes, the typical compositions of commercial refractory metal alloys and their applications are described. Physical and chemical properties are listed and the recrystallization behavior, as well as the mechanical properties including low- and high-cycle fatigue, are depicted. The mechanisms leading to an increased recrystallization temperature by either doping Mo and W with rare earth oxides or by K-doping of W are explained. Furthermore, fracture mechanics and creep properties are described and an extensive compilation of materials data is included.

In addition to a high melting point, the metals Nb, Ta, Mo, and W have a low coefficient of thermal expansion, a low vapor pressure, and an excellent corrosion resistance against acids, liquid metals and ceramic melts. Mo and W have a high thermal and electrical conductivity, a high Young's modulus and mechanical properties, which strongly depend on the content of interstitial impurities such as oxygen, sulfur, phosphorous, nitrogen, carbon and boron. The interrelationships are summarized in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.B. Conway, B.N. Flagella: Creep Rupture Data for the Refractory Metals to High Temperatures (Gordon Breach, New York 1971)

    Google Scholar 

  2. R. Kieffer, G. Jangg, P. Ettmayer: Sondermetalle (Springer, Vienna 1971)

    Book  Google Scholar 

  3. American Society for Metals: Properties and Selection: Nonferrous Alloys and Pure Metals, Metals Handbook New Series, Vol. 2, 9th edn. (American Society for Metals, Metals Park 1979)

    Google Scholar 

  4. W.C. Hagel, J.A. Shields, S.M. Tuominen: Processing and production of molybdenum and tungsten alloys. In: Proc. Symp. Refract. Technol. Space Nucl. Power Appl., CONF-8308130, Oak Ridge National Laboratory (1983) p. 98

    Google Scholar 

  5. K.H. Miska, M. Semchyshen, E.P. Whelan (Eds.): Physical Metallurgy and Technology of Molybdenum and its Alloys (AMAX, Michigan 1985)

    Google Scholar 

  6. J. Wadsworth, T.G. Nieh, J.J. Stephens: Recent advances in aerospace refractory metal alloys, Int. Mater. Rev. 33(3), 131 (1988)

    Article  CAS  Google Scholar 

  7. E. Pink, I. Gaal: Mechanical properties and deformation mechanisms of non-sag tungsten wires. In: The Metallury of Doped, Non-Sag Tungsten, ed. by E. Pink, L. Bartha (Elsevier, New York 1989) p. 209

    Google Scholar 

  8. T.G. Nieh, J. Wadsworth: Recent advances and developments in refractory alloys, Mater. Res. Soc. Symp. Proc. 322, 315 (1994)

    Article  CAS  Google Scholar 

  9. E. Pink, R. Eck: Refractory metals and their alloys. In: Materials Science and Technology – A Comprehensive Treatment, Vol. 8, ed. by R.W. Cahn, P. Haasen, E.J. Kramer (VCH, Weinheim 1997) p. 589

    Google Scholar 

  10. E. Lassner, W.D. Schubert: Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds (Kluwer/Plenum, New York 1999)

    Book  Google Scholar 

  11. G. Leichtfried: Handbook of Extractive Metallurgy (Wiley-VCH, Weinheim 1997) p. 1371

    Google Scholar 

  12. G. Leichtfried: Powder Metallurgy Data, Landolt–Börnstein, New Series, Vol. VIII/2A (Springer, Berlin, Heidelberg, New York 2002)

    Google Scholar 

  13. G. Leichtfried: Molybdenum lanthanum oxide: Special material properties by dispersoid refining during deformation. In: Advances in Powder Metallurgy and Particulate Materials, Vol. 9 (MPIF, Princeton 1992) p. 123

    Google Scholar 

  14. M.K. Yoo, Y. Hiraoka, J. Chu: Recrystallization of Mo wire doped with lanthanum oxide, Int. J. Refract. Metal. Hard Mater. 13(4), 221 (1995)

    Article  CAS  Google Scholar 

  15. A.J. Mueller, R.W. Buckman, A.J. Shields Jr.: The effect of TM-processing on the mechanical properties of Mo-2% lanthana. In: Proc. 15th Int. Plansee Semin. (Plansee AG, Reutte 2001)

    Google Scholar 

  16. G.-J. Zhang, Y.-J. Sun, F. Jiang, L. Wang, R. Wang, J. Sun: Microstructure and strenghening mechanisms of Mo-alloy wires doped with lathanum oxide particles, Int. J. Refract. Met. Hard Mat. 27(1), 173 (2009)

    Article  CAS  Google Scholar 

  17. D.M. Moon, R.C. Koo: Mechanism and kinetics of bubble formation in doped W, Metall. Mater. Trans. B 2, 2125 (1971)

    Google Scholar 

  18. H.G. Sell, D.F. Stein, R. Stickler, A. Joshi, E. Berkey: The identification of bubble forming impurities in doped tungsten, J. Inst. Met. 100, 275 (1972)

    CAS  Google Scholar 

  19. P. Makarov, K. Povarova: Principles of the alloying of tungsten and development of the manufacturing technology for the tungsten alloys. In: Proc. 15th Plansee Semin., Vol. 3 (Plansee AG, Reutte 2001) p. 464

    Google Scholar 

  20. G.A. Geach, J.E. Hughes: The alloy of rhenium with molybdenum or with tungsten and having good high temperature properties. In: Proc. 2nd Plansee Semin. (Plansee AG, Reutte 1955) p. 245

    Google Scholar 

  21. R.I. Jaffee, C.T. Sims, J.J. Harwood: The effect of rhenium on the fabricability and ductility of molybdenum and tungsten. In: Proc. 3rd Plansee Semin. (Plansee AG, Reutte 1958) p. 380

    Google Scholar 

  22. J.G. Booth, R.I. Jaffee, E.I. Salkovitz: The mechanisms of the rhenium-alloying effect in group VI-A metals. In: Proc. 5th Plansee Semin. (Plansee AG, Reutte 1964) p. 547

    Google Scholar 

  23. Plansee Aktiengesellschaft: Internal Material Data Base (Reutte 2000)

    Google Scholar 

  24. H. Borchers, E. Schmidt (Eds.): Stoffwerte und Verhalten von metallischen Werkstoffen, Landolt–Börnstein, New Series, Vol. IV/2b, 6th edn. (Springer, Berlin, Heidelberg 1964)

    Google Scholar 

  25. T.E. Tietz, J.W. Wilson: Behavior and Properties of Refractory Metals (Stanford Univ. Press, Stanford 1965) p. 325

    Google Scholar 

  26. Plansee Aktiengesellschaft: Tungsten Company Brochure (Reutte 1997)

    Google Scholar 

  27. C. Cagran, C. Brunner, A. Seifter, G. Pottlacher: Liquid-phase behaviour of normal spectral emissivity at 684.5 nm of some selected metals, High Temp. High Press. 34, 669 (2002)

    Article  CAS  Google Scholar 

  28. Dechema-Werkstoff-Tabelle: Oxidierende Heißgase (Dechema, Frankfurt 1981)

    Google Scholar 

  29. S.P. Murarka: Silicides for VLSI Applications (Academic, New York 1983), p. 73, 151

    Google Scholar 

  30. Y. Kuo (Ed.): Thin Film Transistors – Materials and Processes, Amorphous Silicon Thin Film Transistors New Series, Vol. 1 (Kluwer, Dordrecht 2004) p. 335

    Google Scholar 

  31. W.N. Shafarman, J.E. Phillips: Direct current-voltage measurements of the Mo/CuInSe2 contact on operating solar cells. In: Proc. 25th IEEE Photovolt. Conf. (1996) p. 917

    Google Scholar 

  32. A. Schintlmeister, H.-P. Martinz, P. Wilhartitz, F.P. Netzer: Low-temperature oxidation of industrial molybdenum surfaces. In: Powder Metall. World Congr. Exhib. (EPMA, Granada 1998) p. 526

    Google Scholar 

  33. G. Leichtfried: Powder Metallurgical Components for Light Sources, Habilitation Thesis (Montanuniversität, Leoben 2003)

    Google Scholar 

  34. A. List, C. Mitterer, G. Mori, J. Winkler, N. Reinfried, W. Knabl: Oxidation of sputtered thin films of molybdenum alloys at ambient conditions. In: Proc. 17th Plansee Semin., Vol. 1 (Plansee Group, Reutte 2009), RM12/1

    Google Scholar 

  35. E. Fromm, E. Gebhardt: Gase und Kohlenstoff in Metallen (Springer, Berlin, Heidelberg 1976) p. 747, in German

    Book  Google Scholar 

  36. R. Speiser, G.R. St. Pierre: Proc. AGARD (Advisory Group for Aerospace Research and Development) Conf. on refractory metals, Oslo (1963)

    Google Scholar 

  37. J. Disam, H.-P. Martinz, M. Sulik: Layer for protection against oxydation, European Patent Specification EP 0 798 402 B1 (1997)

    Google Scholar 

  38. C.A. Krier: Coatings for the Protection of Refractory Metals from Oxidation, Defense Metals Information Center Report New Series, Vol. 162 (Battelle Memorial Institute, Columbus 1961)

    Google Scholar 

  39. W. Knabl: Oxidationsschutz von Refraktärmetallen auf der Basis von Silizid- und Aluminidschichten, Ph.D. Thesis (Montanuniversität, Leoben 1995), in German

    Google Scholar 

  40. H.-P. Martinz, M. Sulik: Oxidation protection of refractory metals in the glass industry, Glastech. Ber., Glas Sci. Technol. 73(C2), 299 (2000)

    Google Scholar 

  41. C. Stickler: Mikroplastizität und zyklisches Spannungs- Dehnungsverhalten von Ta und Mo bei Temperaturen unter 0.2T m, Ph.D. Thesis (Univ. Vienna, Vienna 1998)

    Google Scholar 

  42. S. Primig, H. Leitner, H. Clemens, A. Lorich, W. Knabl, R. Stickler: On the recrystallization behavior of technically pure Mo, Int. J. Refract. Metall. Hard Mater. 28, 703 (2010)

    Article  CAS  Google Scholar 

  43. S. Primig, H. Leitner, H. Clemens, A. Lorich, W. Knabl, R. Stickler: SEM and TEM Investigations of recovery and recrystallization in technically pure Mo, Prakt. Metallogr. 48, 7 (2011)

    Google Scholar 

  44. S. Primig, H. Leitner, H. Clemens, A. Lorich, W. Knabl, R. Stickler: Influence of the heating rate on the recrystallization behvior of Mo, Mater. Sci. Eng. A 535, 316 (2012)

    Article  CAS  Google Scholar 

  45. E. Pink: Rekristallisationsdiagramme von gesintertem Mo und W, Planseeber. Pulvermetall. 13, 100 (1965)

    CAS  Google Scholar 

  46. E. Pink, H. Kärle: Zum Rekristallisationsverhalten von Sintertantal, Planseeber. Pulvermetall. 16, 105 (1968)

    Google Scholar 

  47. G. Leichtfried, G. Thurner, R. Weirather: Molybdenum alloys for glass-to-metal seals. In: Proc. 14th Plansee Semin., Vol. 4 (Plansee AG, Reutte 1997) p. 26

    Google Scholar 

  48. H.H.R. Jansen: The recrystallization texture of nonsag wire. In: The Metallurgy of Doped, Non-Sag Tungsten, ed. by E. Pink, L. Bartha (Elsevier, New York 1989) p. 203

    Google Scholar 

  49. D.B. Snow: The recrystallization of non-sag tungsten wire. In: The Metallurgy of Doped, Non-Sag Tungsten (Elsevier, New York 1989) p. 189

    Google Scholar 

  50. V.I. Trefilov, Y.V. Milman: Physical basis of thermomechanical treatment of refractory metals. In: Proc. 12th Plansee Semin., Vol. 1 (Plansee AG, Reutte 1989) p. 107

    Google Scholar 

  51. E. Parteder, W. Knabl, R. Stickler, G. Leichtfried: Bruchzähigkeit und Porenverteilung von Molybdän Stabmaterial in Abhängigkeit des Reckgrades und des Rekristallisationsgrades. In: Proc. 14th Plansee Semin., Vol. 1 (Plansee AG, Reutte 1997) p. 984

    Google Scholar 

  52. E. Parteder, H. Riedel, R. Kopp: Densification of sintered molybdenum during hot upsetting: Experiments and modeling, Mater. Sci. Eng. A 264, 17 (1999)

    Article  Google Scholar 

  53. E. Parteder: Ein Modell zur Simulation von Umformprozessen pulvermetallurgisch hergestellter hochschmelzender Metalle, Ph.D. Thesis (RWTH, Aachen 2000)

    Google Scholar 

  54. E. Parteder, H. Riedel: Simulating of hot forming processes of refractory metals using porous metal plasticicty models. In: Proc. 15th Plansee Semin., Vol. 3 (Plansee AG, Reutte 2001) p. 60

    Google Scholar 

  55. B.P. Bewlay, C.L. Briant: Discussion of ‘‘evidence for the existence of potassium bubbles in AKS-doped tungsten wire’’ and reply, Metall. Mater. Trans. A 22, 2153 (1991)

    Article  Google Scholar 

  56. C.L. Briant: The effect of thermomechanical processing on the microstructure of tungsten rod. In: Proc. 13th Plansee Semin., Vol. 1 (Plansee AG, Reutte 1993) p. 321

    Google Scholar 

  57. J.L. Walter, C.L. Briant: Tungsten wire for incandescent lamps, J. Mater. Res. 5, 2004 (1990)

    Article  CAS  Google Scholar 

  58. G.L. Krasko: Effect of impurities on the electronic structure of grain boundaries and intergranular cohesion in tungsten. In: Proc. 13th Plansee Semin., Vol. 1 (Plansee AG, Reutte 1993) p. 27

    Google Scholar 

  59. A. Kumar, B.L. Eyre: Grain boundary segregation and intergranular fracture in molybdenum, Proc. R. Soc. A 370, 431 (1980)

    Article  CAS  Google Scholar 

  60. P. Wilhartitz, G. Leichtfried, H.P. Martinz, H. Hutter, A. Virag, M. Grasserbauer: Applications of 3D-SIMS for the development of refractory metal products. In: Proc. 2nd Euro. Conf. Adv. Mater. Process., ed. by T.W. Clyne, P.J. Withers (1992) p. 323

    Google Scholar 

  61. J. Femböck, R. Stickler, A. Vinckier: The effect of strain rate and heating rate on the tensile behavior of W and W-ThO2 between room temperature and 1400°C. In: Proc. 11th Plansee Semin., Vol. 1 (Plansee AG, Reutte 1985) p. 361

    Google Scholar 

  62. D.L. Chen, B. Weiss, R. Stickler, M. Witwer, G. Leichtfried, H. Hödl: Fracture toughness of high melting point materials. In: Proc. 13th Plansee Semin., Vol. 1 (Plansee AG, Reutte 1993) p. 621

    Google Scholar 

  63. E.S. Meiren, D.A. Thomas: Effect of grain boundaries on the bending ductility of tungsten, Metall. Trans. 233, 937 (1965)

    Google Scholar 

  64. P.F. Browning, C.L. Briant, B.A. Knudsen: Dependence of material properties on processing history during wire drawing of commercially doped tungsten lamp wire. In: Proc. 13th Plansee Semin., Vol. 1 (Plansee AG, Reutte 1993) p. 336

    Google Scholar 

  65. P.K. Wright: High temperature creep behavior of doped tungstenwire, Metall. Trans. 9, 955 (1978)

    Article  Google Scholar 

  66. J. Neges, B. Ortner, G. Leichtfried, H.P. Stüwe: On the 45° embrittlement of tungsten sheets, Mater. Sci. Eng. A 196, 129 (1995)

    Article  Google Scholar 

  67. Y.V. Milman: unpublished results

    Google Scholar 

  68. St M. Cardonne: Tantalum and its alloys, Adv. Mater. Process. 9, 16 (1992)

    Google Scholar 

  69. H. Ullmaier: Design properties of tantalum or everything you always wanted to know about tantalum but were afraid to ask, ESS (European Spallation Source) Report ISSN 1433-559X, 03-131-T (2003)

    Google Scholar 

  70. A. Seeger: The temperature dependence of the critical shear stress and of work hardening of metal crystals, Philos. Mag. 7, 771 (1954)

    Article  Google Scholar 

  71. J.W. Christian: Plastic deformation of bcc metals. In: Proc. Int. Conf. Strength Mater. (ICSMA-2), Asilomar (ASTM, Philadelphia 1970) p. 31

    Google Scholar 

  72. H. Mughrabi: unpublished results

    Google Scholar 

  73. W. Rinnerthaler, F. Benesovsky: Untersuchungen über das Mikrodehnungsverhalten von Molybdän, Planseeber. Pulvermetall. 21, 253 (1973)

    CAS  Google Scholar 

  74. C. Stickler, D.L. Chen, B. Weiss, R. Stickler: Time dependent microplastic deformation of Mo and Ta at low temperatures. In: Proc. 14th Plansee Semin., Vol. 1 (Plansee AG, Reutte 1997) p. 1004

    Google Scholar 

  75. K.J. Bowman, R. Gibala: Cyclic deformation of W single crystals, Scr. Metall. 20, 1451 (1986)

    Article  Google Scholar 

  76. M.A. Meyers, Y.-J. Chen, F.D.S. Marquis, D.S. Kim: High-strain, high-strain-rate behavior of tantalum, Metall. Mater. Trans. A 26, 2493 (1995)

    Article  Google Scholar 

  77. C.C. Wojcik: Thermomechanical processing and properties of niobium alloys. In: Proc. Int. Symp. Niobium, Orlando (2001) p. 163

    Google Scholar 

  78. H. Mughrabi, K. Herz, X. Stark: Cyclic deformation and fatigue behavior of α-Fe mono- and polycrystals, Int. J. Fract. 17, 193 (1981)

    Article  CAS  Google Scholar 

  79. M. Werner: Temperature and strain rate dependence of the flow stress of Ta single crystals in cyclic deformation, Rev. Phys. Appl. 23, 672 (1988)

    Article  Google Scholar 

  80. J. Femböck, K. Pfaffinger, B. Weiss, R. Stickler: Verhalten von Mo-Werkstoffen unter zyklischer Beanspruchung. In: Proc. 10th Plansee Semin., Vol. 2 (Plansee AG, Reutte 1981) p. 27

    Google Scholar 

  81. K. Pfaffinger, J. Femböck: Versuchsplanung und statistische Auswertung von Schwingfestigkeitsdaten von Mo-Werkstoffen. In: Proc. 10th Plansee Semin., Vol. 2 (Plansee AG, Reutte 1981) p. 233

    Google Scholar 

  82. K. Mecke, C. Holste, W.F. Terentjev: Dislocation arrangement in cyclically deformed polycrystalline molybdenum, Cryst. Res. Technol. 15, 83 (1980)

    CAS  Google Scholar 

  83. S. Kong, B. Weiss, R. Stickler, M. Witwer, H. Hödl: Cyclic stress strain behavior of high melting point metals. In: Proc. 13th Plansee Semin., Vol. 1 (Plansee AG, Reutte 1993) p. 720

    Google Scholar 

  84. D.R. Helebrand, R.I. Stephens: Cyclic yield behavior of Ta, J. Mater. Sci. 7, 530 (1972)

    Google Scholar 

  85. C. Stickler, W. Knabl, R. Stickler, B. Weiss: Cyclic behavior of Ta at low temperatures under low stresses and strain rates. In: Proc. 15th Plansee Semin., Vol. 3 (Plansee AG, Reutte 2001) p. 34

    Google Scholar 

  86. J.M. Meiniger, J.C. Gibeling: LCF of Nb and Nb-1Zr alloys, Metall. Trans. A 23, 3077 (1992)

    Article  Google Scholar 

  87. M. Papakyriacou, H. Mayer, C. Pypen, H. Plenk, S. Stanzl-Tschegg: Influence of loading frequency on high cycle fatigue properties of bcc and hcp metals, Mater. Sci. Eng. A 308, 143 (2001)

    Article  Google Scholar 

  88. H.A. Calderon, G. Kostorz: Microstructure and plasticity of two molybdenum-base alloys (TZM), Mater. Sci. Eng. A A160, 189 (1993)

    Article  CAS  Google Scholar 

  89. H.J. Shi, L.S. Niu, C. Korn, G. Pluvinage: High temperature fatigue behavior of Mo-TZM alloy under mechanical and thermomechanical cyclic load, J. Nucl. Mater. 278, 328 (2000)

    Article  CAS  Google Scholar 

  90. R.F. Brodrick: LCF-data of P/M-W between 1650 and 3300C, Proc. ASTM 64, 505 (1965)

    CAS  Google Scholar 

  91. S.S. Manson: Thermal Stress and Low Cycle Fatigue (McGraw-Hill, New York 1981) p. 187

    Google Scholar 

  92. R.E. Schmunk, G.E. Korth, M. Ulrickson: Tensile and LCF measurements on cross rolled tungsten, J. Nucl. Mater. 103, 943 (1981)

    Article  Google Scholar 

  93. T. Kimishima, M. Sukekawa, K. Owada, M. Shimizu: Fatigue data of Mo. In: 9th Symp. Eng. Probl. Fusion Res. (IEEE, New York 1981) p. 255

    Google Scholar 

  94. H. Nishi, T. Oku, T. Kodeira: Influence of microstructural change caused by cyclic strain on the LCF strength of sintered Mo, Fusion Eng. Des. 9, 123 (1989)

    Article  Google Scholar 

  95. Z.M. Sun, Z.G. Wang, H. Hödl, R. Stickler, B. Weiss: Low cycle fatigue and creep behavior of recrystallized Mo near room temperature, Materialwiss. Werkstofftech. 26, 483 (1995)

    Article  CAS  Google Scholar 

  96. J.A. Shields, P. Lipetzly, A.J. Mueller: Fracture toughness of 6.4 mm arc cast Mo and TZM Plate at RT and 300C. In: Proc. 15th Plansee Semin., Vol. 4 (Plansee AG, Reutte 2001) p. 187

    Google Scholar 

  97. B.V. Cockeram: Measuring the fracture toughness of Mo-0.5%Ti-0.1%Zr using standard and subsized bend specimens, Metall. Mater. Trans. A 33(12), 3685 (2002)

    Article  Google Scholar 

  98. M. Faleschini, H. Kreuzer, D. Kiener, R. Pippan: Fracture toughness investigations of W-alloys, J. Nucl. Mater. A 367–370, 800 (2007)

    Article  CAS  Google Scholar 

  99. B. Gludovatz, S. Wurster, A. Hoffmann, R. Pippan: Fracture toughness of polycrystalline W alloys, Int. J. Refract. Metal. Hard Mater. 28(6), 674 (2010)

    Article  CAS  Google Scholar 

  100. C.W. Marschall, F.C. Holden: Fracture toughness of refractory metals and alloys. In: High Temperature Refractory Metals, ed. by L. Richardson (Gordon Breach, New York 1964) p. 129

    Google Scholar 

  101. M. Rödig, H. Derz, G. Pott, B. Werner: Fracture mechanics investigations of TZM and Mo5Re. In: Proc. 14th Plansee Semin., Vol. 1 (Plansee AG, Reutte 1997) p. 781

    Google Scholar 

  102. D. Padhi, J.J. Lewandowski: Effects of test temperature and grain size on the charpy impact toughness and dynamic toughness (KID) of polycrystalline niobium, Metall. Mater. Trans. A 34, 967 (2003)

    Article  Google Scholar 

  103. J.X. Zhang, L. Liu, M.L. Zhou, Y.C. Hu, T.Y. Zuo: Fracture toughness of sintered Mo-La2O3, Inter. J. Refract. Metall. Hard Mater. 17, 405 (1999)

    Article  Google Scholar 

  104. D.L. Chen, B. Weiss, R. Stickler: The effective fatigue threshold: Significance of the loading cycle below the crack opening load, Int. J. Fatigue 16, 485 (1994)

    Article  CAS  Google Scholar 

  105. J. Riedle: Bruchwiderstand in Wolfram-Einkristallen: Einfluß der kristallographischen Orientierung, der Temperatur und der Lastrate. In: Fortschrittsberichte VDI, Reihe 18, Mechanik/Bruchmechanik, Vol. 184 (VDI, Düsseldorf 1995)

    Google Scholar 

  106. R. Pippan: Bruchzähigkeitsuntersuchungen an W Proben (Erich Schmid Institut, Leoben 1999)

    Google Scholar 

  107. Y. Mutoh, K. Ichikawa, K. Nagata, M. Takeuchi: Effect of Re addition on fracture toughness of W at elevated temperatures, J. Mater. Sci. 30, 770 (1995)

    Article  CAS  Google Scholar 

  108. A. Fathulla, B. Weiss, R. Stickler: Short fatigue cracks in technical P/M-Mo alloys. In: The Behavior of Short Fatigue Cracks, Mechanical Engineering Publications, Vol. 1 (EGF, Suffolk 1986) p. 115

    Google Scholar 

  109. R. Grill, H. Clemens, P. Rödhammer, A. Voiticek: P/M processing, characterization and application of Ta-10W. In: Proc. 14th Plansee Semin., Vol. 4 (Plansee AG, Reutte 1997) p. 211

    Google Scholar 

  110. R. Heidenreich, R. Schäfer, H. Clemens, M. Witwer: Mechanical properties of high-temperature fasteners from refractory alloys. In: Proc. 13th Plansee Semin., Vol. 1 (Plansee AG, Reutte 1993) p. 664

    Google Scholar 

  111. A. Fathulla, B. Weiss, R. Stickler, J. Femböck: The initiation and growth of short cracks in PM-Mo. In: Proc. 11th Plansee Semin., Vol. 1 (Plansee AG, Reutte 1985) p. 45

    Google Scholar 

  112. H. Kitagawa, S. Takahashi: Applicability of fracture mechanics to very small cracks or the cracks in the early stage. In: Proc. Second Int. Conf. Mech. Behav. Mater. (ASM, Metals Park 1976) p. 627

    Google Scholar 

  113. B. Weiss, R. Stickler: Methods for predicting the fatigue strength of P/M-materials. In: Proc. Int. Powder Metall. Conf. PM’88, Orlando (1988) p. 3

    Google Scholar 

  114. B. Weiss, R. Stickler, A.F. Blom: A model for the description of the influence of small 3-dimensional defects on the HCF limit. In: Proc. Conf. Short Fatigue Cracks, Sheffield, 1990 (Mechanical Engineering, Suffolk 1992) p. 423

    Google Scholar 

  115. R.W. Buckman: The creep behavior of refractory metal alloys, Int. J. Refract. Metal. Hard Mater. 18(4/5), 253 (2000)

    Article  CAS  Google Scholar 

  116. B. Fischer, S. Vorberg, R. Voekl, M. Beschliesser, A. Hoffmann: Creep and tensile tests on refracrory metals at extremely high temperatures, Int. J. Refract. Metal Hard Mater. 24(4), 292 (2006)

    Article  CAS  Google Scholar 

  117. G. Leichtfried: Die Entwicklung von kriechfesten Molybdän-Seltenerdoxid-Werkstoffen für Hochtemperaturanwendungen, Ph.D. Thesis (Montanuniversität, Leoben 1997)

    Google Scholar 

  118. G. Zilberstein: Creep properties of non-sag tungsten recrystallized in stagnant oxygen-doped argon, Int. J. Refract. Metall. Hard Mater. 16, 71 (1998)

    Article  CAS  Google Scholar 

  119. D.M. Moon, R. Stickler: Creep behavior of fine wires of P/M pure, doped and thoriated tungsten, High Temp. High Press. 3, 503 (1971)

    CAS  Google Scholar 

  120. J.W. Pugh: On the short time creep rupture properties of lamp wire, Metall. Trans. 4, 533 (1973)

    Article  CAS  Google Scholar 

  121. J.H. Schröder, E. Arzt: Weak beam studies of dislocation/dispersoid interaction in an ODS superalloy, Scr. Metall. 19, 1129 (1985)

    Article  Google Scholar 

  122. J. Rössler, E. Arzt: Kinetics of dislocation climb over hard particles – Climb without attractive particle-dislocation interaction, Acta Metall. 36, 1043 (1988)

    Article  Google Scholar 

  123. J. Rössler, E. Arzt: A new model-based creep equation for dispersion strengthened materials, Acta Metall. Mater. 38(4), 671 (1990)

    Article  Google Scholar 

  124. G. Zilberstein, J. Selverian: Creep deformation of non-sag tungsten in argon doped with low oxygen concentrations. In: Proc. 13th Plansee Semin., Vol. 1 (Plansee AG, Reutte 1993) p. 132

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Knabl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Knabl, W., Leichtfried, G., Stickler, R. (2018). Refractory Metals and Refractory Metal Alloys. In: Warlimont, H., Martienssen, W. (eds) Springer Handbook of Materials Data. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-69743-7_13

Download citation

Publish with us

Policies and ethics