Skip to main content

On the Triple Product Formula: Real Local Calculations

  • Conference paper
  • First Online:
L-Functions and Automorphic Forms

Part of the book series: Contributions in Mathematical and Computational Sciences ((CMCS,volume 10))

Abstract

We consider a triple of admissible representations π j for j = 1, 2, 3 of \({\mathrm {GL}}_2(\mathbb R)\) of weights k j with k 1 ≥ k 2 + k 3. Test vectors are given, and using a formula of Michel-Venkatesh explicit values for local trilinear forms are computed for these vectors. Using this we determine the real archimedean local factors in Ichino’s formula for the triple product L-function. Applications both new and old to subconvexity, quantum chaos and p-adic modular forms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    As a restricted tensor product, we have chosen vectors \(\varphi _{i,v}^0\in \pi _v\) for all but finitely many places v. We require that the local inner forms must satisfy \(\langle \varphi _{i,v}^0,\varphi _{i,v}^0\rangle _v=1\) for all such v.

  2. 2.

    This implies directly that k 1 + k 2 + k 3 is even.

  3. 3.

    By Prasad [20], this assumption is necessary as otherwise I v is identically zero.

  4. 4.

    In this special case we also assume that if k j  = 0 for all j then a certain invariant 𝜖 = 0 defined in Sect. 3.1 in terms of the representations π j .

  5. 5.

    Contrary to commonly used notation, in [19] this function is referred to as J ν .

  6. 6.

    It is necessary, of course, that m = wt(π) + 2n for some \(n\in \mathbb Z_{\geq 0}\).

References

  1. Bernstein, J., Reznikov, A.: Periods, subconvexity of L-functions and representation theory. J. Differ. Geom. 70(1), 129–141 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bump, D.: Automorphic Forms and Representations. Cambridge Studies in Advanced Mathematics, vol. 55. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  3. Darmon, H., Lauder, A., Rotger, V.: Stark points and p-adic iterated integrals attached to modular forms of weight one. Forum Math. Pi 3, e8, 95 (2015)

    Google Scholar 

  4. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of Integral Transforms: Based, in Part, on Notes Left by Harry Bateman, vol. 1. McGraw-Hill Book Company, Inc., New York/Toronto/London (1954)

    MATH  Google Scholar 

  5. Garrett, P.B.: Decomposition of Eisenstein series: rankin triple products. Ann. Math. (2) 125(2), 209–235 (1987)

    Google Scholar 

  6. Gross, B.H., Kudla, S.S.: Heights and the central critical values of triple product L-functions. Compos. Math. 81(2), 143–209 (1992)

    MathSciNet  MATH  Google Scholar 

  7. Harris, M., Kudla, S.S.: The central critical value of a triple product L-function. Ann. Math. (2) 133(3), 605–672 (1991)

    Google Scholar 

  8. Holowinsky, R., Soundararajan, K.: Mass equidistribution for Hecke eigenforms. Ann. Math. (2) 172(2), 1517–1528 (2010)

    Google Scholar 

  9. Hu, Y.: The subconvexity bound for triple product L-function in level aspect. arXiv e-prints (2014)

    Google Scholar 

  10. Hu, Y.: Triple product formula and mass equidistribution on modular curves of level N. arXiv e-prints (2014)

    Google Scholar 

  11. Ichino, A.: Trilinear forms and the central values of triple product L-functions. Duke Math. J. 145(2), 281–307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ichino, A., Ikeda, T.: On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture. Geom. Funct. Anal. 19(5), 1378–1425 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ikeda, T.: On the gamma factor of the triple L-function. I. Duke Math. J. 97(2), 301–318 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jacquet, H., Langlands, R.P.: Automorphic Forms on GL(2). Lecture Notes in Mathematics, vol. 114. Springer, Berlin/New York (1970)

    Google Scholar 

  15. Knapp, A.W.: Local Langlands correspondence: the Archimedean case, Motives (Seattle, WA, 1991). In: Proceedings of Symposia in Pure Mathematics, vol. 55, pp. 393–410. American Mathematical Society, Providence, RI (1994)

    Google Scholar 

  16. Loke, H.Y.: Trilinear forms of \(\mathfrak {gl}\sb 2\). Pac. J. Math. 197(1), 119–144 (2001)

    Google Scholar 

  17. Michel, P., Venkatesh, A.: The subconvexity problem for GL2. Publ. Math. Inst. Hautes Études Sci. 111, 171–271 (2010)

    Article  MATH  Google Scholar 

  18. Nelson, P.D., Pitale, A., Saha, A.: Bounds for Rankin-Selberg integrals and quantum unique ergodicity for powerful levels. J. Am. Math. Soc. 27(1), 147–191 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Popa, A.A.: Whittaker newforms for Archimedean representations. J. Number Theory 128(6), 1637–1645 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Prasad, D.: Trilinear forms for representations of GL(2) and local 𝜖-factors. Compos. Math. 75(1), 1–46 (1990)

    MathSciNet  MATH  Google Scholar 

  21. Piatetski-Shapiro, I., Rallis, S.: Rankin triple L functions. Compos. Math. 64(1), 31–115 (1987)

    MathSciNet  MATH  Google Scholar 

  22. Sarnak, P., Zhao, P., and Appendix by Woodbury, M.: The Quantum Variance of the Modular Surface. arXiv e-prints (2013)

    Google Scholar 

  23. Soundararajan, K.: Weak subconvexity for central values of L-functions. Ann. Math. (2) 172(2), 1469–1498 (2010)

    Google Scholar 

  24. Venkatesh, A.: Sparse equidistribution problems, period bounds and subconvexity. Ann. Math. (2) 172(2), 989–1094 (2010)

    Google Scholar 

  25. Watson, T.: Rankin triple products and quantum chaos. Ph.D. thesis, Princeton (2001)

    Google Scholar 

  26. Woodbury, M.: Explicit trilinear forms and subconvexity of the triple product L-function. Thesis (Ph.D.), The University of Wisconsin - Madison, ProQuest LLC, Ann Arbor, MI (2011)

    Google Scholar 

Download references

Acknowledgements

The author wishes to thank Kathrin Bringmann under whose supervision and encouragement he worked during most of the writing and editing of this paper and the University of Cologne for providing working conditions and an environment in which this work was accomplished. He thanks as well the referee for suggestions that have led to an improved presentation and greater clarity of exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Woodbury .

Editor information

Editors and Affiliations

Appendix: Normalizing L-Factors

Appendix: Normalizing L-Factors

The goal of this appendix is to record the normalizing L-factors for the triple product L-function appearing in (1.2). These factors are determined by applying the local Langlands correspondence relating finite dimensional semisimple representations of the Weil group \(W_{\mathbb R}\) to admissible representations of \({\mathrm {GL}}_2(\mathbb R)\) as detailed in [15]. The local factors will be described in terms of

$$\displaystyle \begin{aligned} \Gamma_{\mathbb R}(s) = \pi^{-s/2}\Gamma(s/2),\qquad \mbox{and}\qquad \Gamma_{\mathbb C}(s) = \Gamma_{\mathbb R}(s)\Gamma_{\mathbb R}(s+1)=2(2\pi)^{-s}\Gamma(s). \end{aligned}$$

We recall the following elementary facts:

$$\displaystyle \begin{aligned} \overline{\Gamma(s)} = \Gamma(\overline{s}),\quad \Gamma_{\mathbb R}(1)=1, \quad \Gamma_{\mathbb R}(2) = \frac{1}{\pi}, \quad \Gamma_{\mathbb C}(m) = \frac{(m-1)!}{2^{m-1}\pi^m}. \end{aligned}$$

1.1 Local Langlands Parameters for \({\mathrm {GL}}_2(\mathbb R)\)

We recall briefly the local Langlands correspondence for \({\mathrm {GL}}_2(\mathbb R)\). (See [15] for complete details.) Let \(W_{\mathbb R}=\mathbb C^\times \cup j\mathbb C^\times \) with j 2 = −1 and \(jzj^{-1}=\bar {z}\) for \(z\in \mathbb C^\times \) be the Weil group. For δ ∈{0, 1} and \(t\in \mathbb C\), we have the 1-dimensional representation of \(W_{\mathbb R}\) given by

$$\displaystyle \begin{aligned} \rho_1(\delta,t): \begin{array}{c} z \mapsto \lvert z \rvert^t \\ j\mapsto (-1)^\delta. \end{array} \end{aligned}$$

Moreover, if \(m\in \mathbb Z\) and \(t\in \mathbb C\) we have the 2-dimensional representation

$$\displaystyle \begin{aligned} \rho_2(m,t): \begin{array}{c} re^{i\theta}\mapsto \left( \begin{array}{cc} r^{2t}e^{im\theta} & 0 \\ 0 & r^{2t}e^{-im\theta} \end{array}\right) \\ j \mapsto \left( \begin{array}{cc} 0 & (-1)^m \\ 1 & 0 \end{array}\right) \end{array}, \end{aligned}$$

which is easily checked to be irreducible except when m = 0. The following is a simple exercise.

Lemma A.1

Every semisimple finite-dimensional representation of \(W_{\mathbb R}\) is a direct sum of irreducibles of the type ρ 1 and ρ 2 as defined above. Under the operations of direct sum and tensor product, the following is a complete set of relations.

$$\displaystyle \begin{aligned} \rho_2(m,t) \simeq & \rho_2(-m,t) \\ \rho_2(0,t) \simeq & \rho_1(0,t)\oplus\rho_1(1,t) \\ \rho_1(\delta_1,t_1)\otimes\rho_1(\delta_2,t_2) \simeq & \rho_1(\delta,t_1+t_2) \qquad \delta\equiv \delta_1+\delta_2\pmod{2}) \\ \rho_1(\delta,t_1)\otimes\rho_2(m,t_2) \simeq & \rho_2(m,t_1+t_2) \\ \rho_2(m_1,t_1)\otimes\rho_2(m_2,t_2) \simeq & \rho_2(m_1+m_2,t_1+t_2)\oplus \rho_2(m_1-m_2,t_1+t_2). \end{aligned} $$

Moreover, if \(\widetilde {\rho }\) denotes the contragradient of ρ then

$$\displaystyle \begin{aligned} \widetilde{\rho_1(\delta,t)}\simeq \rho_1(\delta,-t),\quad\mathit{\mbox{ and }}\quad \widetilde{\rho_2(m,t)}\simeq \rho_2(m,-t). \end{aligned}$$

Given an irreducible admissible representation π of \({\mathrm {GL}}_2(\mathbb R)\) we associate to it a representation ρ(π) of \(W_{\mathbb R}\). For example, if \(\mathcal B(\chi _1,\chi _2)=\mathcal B({\mathrm {sgn}}^{\epsilon _1}\lvert \cdot \rvert ^{s_1},{\mathrm {sgn}}^{\epsilon _2}\lvert \cdot \rvert ^{s_2})\) is irreducible the corresponding representation of \(W_{\mathbb R}\) is ρ 1(𝜖 1, s 1) ⊕ ρ 1(𝜖 2, s 2). We record how this correspondence works in Table 1 for representations with central character sgnδ. (We let \(\overline {\delta +\epsilon }\in \{0,1\}\) be the reduction of 𝜖 + δ modulo 2.) Note that the third column of the table is calculated using Lemma A.1 and the identity

$$\displaystyle \begin{aligned} {\mathrm{Ad}}(\rho) \simeq \rho\otimes \widetilde{\rho}\ominus\rho_1(0,0). \end{aligned}$$
Table 1 Representations of \(W_{\mathbb R}\) attached to admissible unitary representations of \({\mathrm {GL}}_2(\mathbb R)\)

1.2 Triple Product and Adjoint L-Factors

We associate to each of ρ 1(δ, t) and ρ 2(m, t) the L-functions

$$\displaystyle \begin{aligned} L(s,\rho_1(\delta,t)) = \Gamma_{\mathbb R}(s+\delta+t), \qquad L(s,\rho_2(m,t)) = \Gamma_{\mathbb C}(s+\textstyle{\frac{m}{2}}+t). \end{aligned} $$
(A.1)

More generally, given ρ ≃ ρ 1 ⊕ ρ 2 ⊕⋯ ⊕ ρ r a (semisimple) representation of \(W_{\mathbb R}\) with ρ j irreducible we define

$$\displaystyle \begin{aligned} L(s,\rho) = \prod_{j=1}^r L(s,\rho_j). \end{aligned}$$

Using this definition it follows, setting L(s, π, Ad) = L(s, Ad(ρ(π))) and combining (A.1) with Table 1, that

$$\displaystyle \begin{aligned} L(1,\pi,{\mathrm{Ad}}{})) = \begin{cases} \Gamma_{\mathbb R}(2)\Gamma_{\mathbb C}(k) & \mbox{ if }\pi=\pi_{\mathrm{dis}}^{k}, \vspace{2pt} \\ \displaystyle{\frac{\Gamma(\frac{1+\delta}{2}+\nu)\Gamma(\frac{1+\delta}{2}-\nu)}{\pi^{1+\delta}}} & \mbox{ if }\pi=\pi_{\delta,\epsilon}(\textstyle{\frac 12}+\nu).\end{cases} \end{aligned} $$
(A.2)

Recall that we are considering admissible representations π 1, π 2, π 3 of \({\mathrm {GL}}_2(\mathbb R)\) such that Π = π 1 ⊗ π 2 ⊗ π 3 has trivial central character. This means that we may assume without loss of generality that the central character of each π j is of the form \({\mathrm {sgn}}^{\delta _j}\) with δ 1 + δ 2 + δ 3 ≡ 0 (mod 2).

Proposition A.2

Consider Π = π 1 ⊗ π 2 ⊗ π 3 a triple product of admissible \({\mathrm {GL}}_2(\mathbb R)\) representations. Let

$$\displaystyle \begin{aligned} &L(s,\Pi) = L(s,\rho(\pi_1)\otimes \rho(\pi_2)\otimes \rho(\pi_3)), \\ & L(s,\Pi,{\mathrm{Ad}}{}) = L(s,{\mathrm{Ad}}(\rho(\pi_1))\otimes {\mathrm{Ad}}(\rho(\pi_2) \otimes{\mathrm{Ad}}(\rho(\pi_3)). \end{aligned} $$

The normalizing factors relating I to I in (1.2) for

$$\displaystyle \begin{aligned} \Pi^1 & = \pi_{0,\epsilon}(\textstyle{\frac 12}+\nu_1)\otimes \pi_{\delta,\epsilon'}(\textstyle{\frac 12}+\nu_2) \otimes \pi_{\delta,\epsilon'}(\textstyle{\frac 12}+\nu_3), \\ \Pi^2 & = \pi_{\mathrm{dis}}^{k}\otimes \pi_{\delta_2,\epsilon_2}(\textstyle{\frac 12}+\nu_2) \otimes \pi_{\delta_3,\epsilon_3}(\textstyle{\frac 12}+\nu_3), \\ \Pi^3 & = \pi_{\mathrm{dis}}^{k_1}\otimes \pi_{\mathrm{dis}}^{k_2} \otimes \pi_{\delta,\epsilon}(\textstyle{\frac 12}+\nu) \qquad\qquad\qquad \mathit{\mbox{ (with }} k_1\geq k_2+\delta), \\ \Pi^4 & = \pi_{\mathrm{dis}}^{k_1}\otimes \pi_{\mathrm{dis}}^{k_2}\otimes \pi_{\mathrm{dis}}^{k_3} \qquad\qquad\qquad\qquad\quad \mathit{\mbox{ (with }}k_1\geq k_2+k_3) \end{aligned} $$

are given by Table 2.

Table 2 Normalizing factors for triple product L-function at a real place

Proof

A simple exercise in applying Lemma A.1 gives the following.

$$\displaystyle \begin{aligned} \rho(\Pi^1) & = \bigg( \bigoplus_{\gamma_j\in\pm} \rho_1(\epsilon,\gamma_1\nu_1+\gamma_2(\nu_2+\nu_3)) \bigg) \oplus \bigg( \bigoplus_{\gamma_j\in\pm}\rho_1(\overline{\epsilon+\delta},\gamma_1\nu_1+\gamma_2(\nu_2-\nu_3)) \bigg) \\ \rho(\Pi^2) & = \bigoplus_{\gamma_j\in \pm} \rho_2(k-1,\gamma_2\nu_2+\gamma_3\nu_3) \\ \rho(\Pi^3) & = \rho_2(k_1+k_2-2,\nu) \oplus \rho_2(k_1+k_2-2,\nu) \oplus \rho_2(k_1-k_2,-\nu) \oplus \rho_2(k_1-k_2,-\nu) \\ \rho(\Pi^4) & = \rho_2(k_1+k_2+k_3-3,0) \oplus \rho_2(k_1+k_2-k_3-1,0) \\ & \qquad \oplus \rho_2(k_1-k_2+k_3-1,0) \oplus \rho_2(k_1-k_2-k_3+1,0) \end{aligned} $$

Combining each of these with the appropriate factors for L(1, π, Ad) from (A.2) together with \(\Gamma _{\mathbb R}(2)^2\) gives the result. □

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Woodbury, M. (2017). On the Triple Product Formula: Real Local Calculations. In: Bruinier, J., Kohnen, W. (eds) L-Functions and Automorphic Forms. Contributions in Mathematical and Computational Sciences, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-69712-3_16

Download citation

Publish with us

Policies and ethics