Skip to main content

Absorption by Particulate Silicon Layer: Theoretical Treatment to Enhance Efficiency of Solar Cells

  • Chapter
  • First Online:
Advances in Silicon Solar Cells

Abstract

Absorption of light by single by crystalline silicon spherical particle and 2D and 3D layers from such particles is theoretically investigated in the wavelength range from 0.28 to 1.12 μm. The range of particle diameters from 0.05 to 1000 μm is covered. Absorption coefficient of monolayer of small- and wavelength-sized particles is calculated in the quasicrystalline approximation of the theory of multiple scattering of waves. For monolayer of large particles, the single scattering approximation is used. Absorption by multilayer is examined under the transfer matrix method. The spectral and integral over the sun spectrum absorption coefficients are studied. The results are compared with the data for homogeneous plane-parallel silicon plates of the equivalent volume of material (equivalent plates). The monolayer and multilayer consisting of silicon particles with sizes significantly smaller than the wavelength absorb lesser than the equivalent silicon plates. The absorption coefficient of the monolayer of large particles is smaller than the one of equivalent plate. Absorption by three- and more monolayer systems of such particles is larger than the one of the equivalent plates. Absorption by monolayer of wavelength-sized particles can be significantly larger than the one of the equivalent plate. It is caused by strong resonance scattering by individual silicon particles and strong multiple scattering in particle arrays. The narrow wavelength intervals (up to 10 nm) of the resonance peak spectral absorption coefficient of monolayer can be more than 100 times larger than the one of the equivalent plate. In the wavelength range from 0.8 μm to 1.12 μm, integral absorption coefficient of monolayer can be more than 20 times higher than the one of the plate. Enhancement of light absorption due to tuning of the multilayer parameters is considered. The sketch of the solar cell based on gradient particulate structure of active layer is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Luque, S. Hegedus (eds.), Handbook of Photovoltaic Science and Engineering, 2nd edn. (Wiley, Chichester, 2011)

    Google Scholar 

  2. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley Interscience, Hoboken, 2007)

    Google Scholar 

  3. S. Domínguez, O. García, M. Ezquer, M.J. Rodríguez, A.R. Lagunas, J. Pérez-Conde, J. Bravo, Photonics Nanostruct. Fundam. Appl. 10, 46–53 (2012). https://doi.org/10.1016/j.photonics.2011.07.001

    Article  Google Scholar 

  4. M.A. Tsai, P.C. Tseng, H.C. Chen, H.-C. Kuo, P. Yu, Opt. Express 19, A28–A34 (2011). https://doi.org/10.1364/OE.19.000A28

    Article  Google Scholar 

  5. X. Sheng, S.G. Johnson, J. Michel, L.C. Kimerling, Opt. Express 19, A841–A850 (2011). https://doi.org/10.1364/OE.19.00A841

    Article  Google Scholar 

  6. G. Kocher-Oberlehner, M. Bardosova, M. Pemble, B.S. Richards, Sol. Energy Mater. Sol. Cells 104, 53–57 (2012). https://doi.org/10.1016/j.solmat.2012.04.018

    Article  Google Scholar 

  7. C.S. Schuster, S. Moraviec, M.J. Mendes, M. Patrini, E.R. Martins, L. Lewis, I. Crupi, T.F. Krauss, Optica 2, 194–200 (2015). https://doi.org/10.1364/OPTICA.2.000194

    Article  Google Scholar 

  8. Z.R. Abrams, A. Niv, X. Zhang, J. Appl. Phys. 109, 114905-1–114905-9 (2011). https://doi.org/10.1063/1.3592297

    Article  Google Scholar 

  9. A. Deinega, I. Valuev, B. Potapkin, Y. Lozovik, J. Opt. Soc. Am. A 28, 770–777 (2011). https://doi.org/10.1364/JOSAA.28.000770

    Article  Google Scholar 

  10. R.B. Wehrspohn, J. Üpping, 3D photonic crystals for photon management in solar cells. Paper presented at conference frontiers in optics 2012: Laser Science XXVIII, Rochester, New York, United States, 14–18 October 2012. OSA Technical Digest (online) (Optical Society of America, 2012), paper LTh3G.5. (2012). https://doi.org/10.1364/LS.2012.LTh3G.5

  11. L. Ji, V.V. Varadan, J. Appl. Phys. 110, 043114-1–043114-8 (2011). https://doi.org/10.1063/1.3626827

    Google Scholar 

  12. V.F. Gremenok, M.S. Tivanov, V.B. Zalesski, Solnechnye elementy na osnove poluprovodnikovykh materialov (Solar Cells Based on Semiconductor Materials). (BSU, Minsk, 2007) (in Russian)

    Google Scholar 

  13. L. Tsakalakos, Mater. Sci. Eng. R. Rep. 62, 175–189 (2008). https://doi.org/10.1016/j.mser.2008.06.002

    Article  Google Scholar 

  14. B.M. Kayes, H.A. Atwater, N.S. Lewis, J. Appl. Phys. Ther. 97, 114302–114312 (2005). https://doi.org/10.1063/1.1901835

    Article  Google Scholar 

  15. K. Vynck, M. Burresi, F. Riboli, D.S. Wiersma, Nat. Mater. 11, 1017–1022 (2012). https://doi.org/10.1038/nmat3442

    Article  Google Scholar 

  16. M. Saritas, H.D. McKell, Solid State Electron. 31, 835–842 (1988). https://doi.org/10.1016/0038-1101(88)90036-6

    Article  Google Scholar 

  17. J. Toušek, S. Dolhov, J. Toušková, Sol. Energy Mater. Sol. Cells 76, 205–210 (2003). https://doi.org/10.1016/S0927-0248(02)00371-9

    Article  Google Scholar 

  18. A.K. Sharma, S.N. Singh, N.S. Bisht, Z.H. Khan, Sol. Energy Mater. Sol. Cells 100, 48–52 (2012). https://doi.org/10.1016/j.solmat.2011.04.027

    Article  Google Scholar 

  19. A.A. Miskevich, V.A. Loiko, J. Quant. Spectr. Rad. Transf. 146, 355–364 (2014). https://doi.org/10.1016/j.jqsrt.2013.12.008i

    Article  Google Scholar 

  20. A.A. Miskevich, V.A. Loiko, J. Quant. Spectr. Rad. Transf. 167, 23–39 (2015). https://doi.org/10.1016/j.jqsrt.2015.08.003

    Article  Google Scholar 

  21. L. Shi, T.U. Tuzer, R. Fenollosa, F. Meseguer, Adv. Mater. 24, 5934–5938 (2012). https://doi.org/10.1002/adma.201201987

    Article  Google Scholar 

  22. L. Shi, J.T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B.A. Korgel, F. Meseguer, Nat. Commun. 4, 1904 (2013). https://doi.org/10.1038/ncomms2934

    Article  Google Scholar 

  23. I. Staude, A.E. Miroshnichenko, M. Decker, N.T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T.S. Luk, D.N. Neshev, I. Brener, Y. Kivshar, ACS Nano 7, 7824–7832 (2013). https://doi.org/10.1021/nn402736f

    Article  Google Scholar 

  24. A. Bapat, C. Anderson, C.R. Perrey, C.B. Carter, S.A. Campbell, U. Kortshagen, Plasma Phys. Controlled Fusion 46, B97–B109 (2004). https://doi.org/10.1088/0741-3335/46/12B/009

    Article  Google Scholar 

  25. S. Barcikowski, A. Hahn, A. Kabashin, B.N. Chichkov, Appl. Phys. A Mater. Sci. Process. 87, 47–55 (2007). https://doi.org/10.1007/s00339-006-3852-1

    Article  Google Scholar 

  26. C.Q. Li, C.-Y. Zhang, Z.-S. Huang, X.-F. Li, Q.-F. Dai, S. Lan, S.-L. Tie, J. Phys. Chem. C 117, 24625–24631 (2013). https://doi.org/10.1021/jp408865p

    Article  Google Scholar 

  27. A. Vladimirov, S. Korovin, A. Surkov, E. Kelm, V. Pustovoy, Laser Phys. 21, 830–835 (2011). https://doi.org/10.1134/S1054660X11080032

    Article  Google Scholar 

  28. U. Zywietz, C. Reinhardt, A.B. Evlyukhin, T. Birr, B.N. Chichkov, Appl. Phys. A Mater. Sci. Process. 114, 45–50 (2014). https://doi.org/10.1007/s00339-013-8007-6

    Article  Google Scholar 

  29. U. Zywietz, A.B. Evlyukhin, C. Reinhardt, B.N. Chichkov, Nat. Commun. 5., Article no. 3402, 1–7 (2014). https://doi.org/10.1038/ncomms4402

    Article  Google Scholar 

  30. G. Mie, Ann. Phys. 25, 377–445 (1908). https://doi.org/10.1002/andp.19083300302

    Article  Google Scholar 

  31. H.C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981)

    Google Scholar 

  32. G.J. Rosasco, H.S. Bennett, J. Opt. Soc. Am. 68, 1242–1250 (1978). https://doi.org/10.1364/JOSA.68.001242

    Article  Google Scholar 

  33. P.R. Conwell, P.W. Barber, C.K. Rushforth, J. Opt. Soc. Am. A 1, 62–67 (1984). https://doi.org/10.1364/JOSAA.1.000062

    Article  Google Scholar 

  34. C.S. Zender, J. Talamantes, J. Quant. Spectrosc. Radiat. Transfer 98, 122–129 (2006). https://doi.org/10.1016/j.jqsrt.2005.05.084

    Article  Google Scholar 

  35. A.B. Evlyukhin, C. Reinhardt, A. Seidel, B.S. Luk’yanchuk, B.N. Chichkov, Phys. Rev. B 82, 045404-1–04540412 (2010). https://doi.org/10.1103/PhysRevB.82.045404

    Article  Google Scholar 

  36. R. Bachelard, P.W. Courteille, R. Kaiser, N. Piovella, Eplasty 97, 14004-p1–14004-p6 (2012). https://doi.org/10.1209/0295-5075/97/14004

    Google Scholar 

  37. Z.Y. Wang, R.J. Zhang, S.Y. Wang, M. Lu, X. Chen, Y.X. Zheng, L.Y. Chen, Z. Ye, C.Z. Wang, K.M. Ho, Sci. Rep. 5, 7810-1–7810-6 (2015). https://doi.org/10.1038/srep07810

    Google Scholar 

  38. V.A. Loiko, V.P. Dick, V.I. Molochko, J. Opt. Soc. Am. A 15, 2351–2354 (1998). https://doi.org/10.1364/JOSAA.15.002351

    Article  Google Scholar 

  39. V.A. Babenko, L.G. Astafyeva, V.N. Kuzmin, Electromagnetic Scattering in Disperse Media (Praxis Publishing, Chichester, 2003)

    Google Scholar 

  40. V.A. Loiko, A.A. Miskevich, Appl. Opt. 44, 3759–3768 (2005). https://doi.org/10.1364/AO.44.003759

    Article  Google Scholar 

  41. M. Lax, Rev. Mod. Phys. 23, 287–310 (1951). https://doi.org/10.1103/RevModPhys.23.287

    Article  Google Scholar 

  42. M. Lax, Phys. Rev. 85, 621–629 (1952). https://doi.org/10.1103/PhysRev.85.621

    Article  Google Scholar 

  43. K.M. Hong, J. Opt. Soc. Am. 70, 821–826 (1980). https://doi.org/10.1364/JOSA.70.000821

    Article  Google Scholar 

  44. C.C. Katsidis, D.I. Siapkas, Appl. Opt. 41, 3978–3987 (2002). https://doi.org/10.1364/AO.41.003978

    Article  Google Scholar 

  45. E. Centurioni, Appl. Opt. 44, 7532–7539 (2005). https://doi.org/10.1364/AO.44.007532

    Article  Google Scholar 

  46. M.C. Troparevsky, A.S. Sabau, A.R. Lupini, Z. Zhang, Opt. Express 18, 24715–24721 (2010). https://doi.org/10.1364/OE.18.024715

    Article  Google Scholar 

  47. Reference Solar Spectral Irradiance: Air Mass 1.5 (American Society for Testing and Materials (ASTM) Terrestrial Reference Spectra for Photovoltaic Performance Evaluation), http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html. Accessed 10 Oct 2016

  48. E. D. Palik (ed.), Handbook of Optical Constants of Solids (Academic, San Diego, 1985)

    Google Scholar 

  49. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  50. M. I. Mishchenko, J. W. Hovenir, L. D. Travis (eds.), Light Scattering by Nonspherical Particles (Academic Press, San Diego, 2000)

    Google Scholar 

  51. M.I. Mishchenko, L.D. Travis, A.A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (University Press, Cambridge, 2002)

    Google Scholar 

  52. Y.H. Fu, A.I. Kuznetsov, A.E. Miroshnichenko, Y.F. Yu, B. Luk’yanchuk, Nat. Commun. 4, 1527 (2013). https://doi.org/10.1038/ncomms2538

    Article  Google Scholar 

  53. S. Person, M. Jain, Z. Lapin, J.J. Sáenz, G. Wicks, L. Novotny, Nano Lett. 13, 1806–1809 (2013). https://doi.org/10.1021/nl4005018

    Article  Google Scholar 

  54. J.M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L.S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J.J. Sáenz, F. Moreno, Nat. Commun. 3, 1–8 (2012). https://doi.org/10.1038/ncomms2167

    Article  Google Scholar 

  55. M. Kerker, D.-S. Wang, C.L. Giles, J. Opt. Soc. Am 73, 765–767 (1983). https://doi.org/10.1364/JOSA.73.000765

    Article  Google Scholar 

  56. A.A. Kokhanovsky, Light Scattering Media Optics. Problems and Solutions, 3rd edn. (Springer, Berlin, 2004)

    Google Scholar 

  57. A. Doicu, T. Wried, Y.A. Eremin, Light Scattering by Systems of Particles (Springer, Berlin, 2006)

    Book  Google Scholar 

  58. S. Ishii, S. Inoue, A. Otomo, J. Opt. Soc. Am. B 31, 218–222 (2014). https://doi.org/10.1364/JOSAB.31.000218

    Article  Google Scholar 

  59. S. Ishii, R.P. Sugavaneshwar, K. Chen, T.D. Dao, T. Nagao, Opt. Mater. Exp. 6, 640–648 (2016). https://doi.org/10.1364/OME.6.000640

    Article  Google Scholar 

  60. V. Savinov, V.A. Fedotov, N.I. Zheludev, Phys. Rev. B 89, 205112-1–20511212 (2014). https://doi.org/10.1103/PhysRevB.89.205112

    Article  Google Scholar 

  61. A.E. Miroshnichenko, A.B. Evlyukhin, Y.F. Yu, R.M. Bakker, A. Chipouline, A.I. Kuznetsov, B. Luk’yanchuk, B.N. Chichkov, Y.S. Kivshar, Nat. Commun. 6, 8069 (2015). https://doi.org/10.1038/ncomms9069

    Article  Google Scholar 

  62. A.B. Evlyukhin, C. Reinhardt, B.N. Chichkov, Phys. Rev. B 84, 235429 (2011). https://doi.org/10.1103/PhysRevB.84.235429

    Article  Google Scholar 

  63. A.B. Evlyukhin, C. Reinhardt, E. Evlyukhin, B.N. Chichkov, J. Opt. Soc. Am. B 30, 2589–2598 (2013). https://doi.org/10.1364/JOSAB.30.002589

    Article  Google Scholar 

  64. M. Polyanskiy, Refractive index database. http://www.refractiveindex.info. Accessed 10 Oct 2016

  65. A. Ishimaru, Wave Propagation and Scattering in Random Media. Single Scattering and Transport Theory, vol 1 (Academic, New York, 1978)

    Google Scholar 

  66. M. Born, E. Wolf, Principles of Optics, 7th edn. (University Press, Cambridge, 2002)

    Google Scholar 

  67. S. Kachan, O. Stenzel, A. Ponyavina, Appl. Phys. B Lasers Opt. 84, 281–287 (2006). https://doi.org/10.1007/s00340-006-2252-8

    Article  Google Scholar 

  68. V.A. Loiko, A.A. Miskevich, Opt. Spectrosc. 115, 274–282 (2013). https://doi.org/10.1134/S0030400X13070096

    Article  Google Scholar 

  69. A.A. Miskevich, V.A. Loiko, J. Quant. Spectrosc. Radiat. Transfer 136, 58–70 (2014). https://doi.org/10.1016/j.jqsrt.2013.05.013

    Article  Google Scholar 

  70. A.A. Miskevich, V.A. Loiko, Photocell. Republic of Belarus Patent BY 18325, 27 Feb 2012

    Google Scholar 

  71. A.A. Miskevich, V.A. Loiko, Photocell. Russian Federation Patent RU 2491681, 11 Mar 2012

    Google Scholar 

  72. A.A. Miskevich, V.A. Loiko, J. Quant. Spectrosc. Radiat. Transfer 112, 1082–1089 (2011). https://doi.org/10.1016/j.jqsrt.2010.11.019

    Article  Google Scholar 

  73. A.A. Miskevich, V.A. Loiko, J. Experiment. Theor. Phys. 113, 1–13 (2011). https://doi.org/10.1134/S1063776111050153

    Article  Google Scholar 

  74. K. Ohtaka, J. Phys. C: Solid St. Phys. 13, 667–680 (1980). https://doi.org/10.1088/0022-3719/13/4/022

    Article  Google Scholar 

  75. K. Ohtaka, M. Inoue, Phys. Rev. B 25, 677–688 (1982). https://doi.org/10.1103/PhysRevB.25.677

    Article  Google Scholar 

  76. M. Inoue, K. Ohtaka, S. Yanagawa, Phys. Rev. B 25, 689–699 (1982). https://doi.org/10.1103/PhysRevB.25.689

    Article  Google Scholar 

  77. K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J.S. Bae, K. Mizuno, S. Yano, Y. Segawa, Phys. Rev. B 61, 5267–5279 (2000). https://doi.org/10.1103/PhysRevB.61.5267

    Article  Google Scholar 

  78. A. Modinos, Phys. A 141, 575–588 (1987). https://doi.org/10.1016/0378-4371(87)90184-1

    Article  Google Scholar 

  79. N. Stefanou, A. Modinos, J. Phys. Condens. Matter 3, 8135–8148 (1991). https://doi.org/10.1088/0953-8984/3/41/012

    Article  Google Scholar 

  80. G. Gantzounis, N. Stefanou, Phys. Rev. B 73, 035115-1–03511510 (2006). https://doi.org/10.1103/PhysRevB.73.035115

    Article  Google Scholar 

  81. V. Yannopapas, J. Opt. Soc. Am. B 31, 631–636 (2014). https://doi.org/10.1364/JOSAB.31.000631

    Article  Google Scholar 

  82. A.B. Evlyukhin, C. Reinhardt, U. Zywietz, B.N. Chichkov, Phys. Rev. B 85, 245411-1–24541112 (2012). https://doi.org/10.1103/PhysRevB.85.245411

    Article  Google Scholar 

  83. J.M. Ziman, Models of Disorder (University Press, Cambridge, 1979)

    Google Scholar 

  84. Z. Fisher, Statistical Theory of Liquids (University Press, Chicago, 1964)

    Google Scholar 

  85. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988)

    Book  Google Scholar 

  86. G.V. Arfken, H.J. Weber, F.E. Harris, Mathematical Methods for Physicists, 7th edn. (Academic Press, Oxford, 2012)

    Google Scholar 

  87. Y. Rosenfeld, Phys. Rev. A 42, 5978 (1990.) https://doi.org/10.1103/PhysRevA.42.5978

    Article  Google Scholar 

  88. V.P. Dick, V.A. Loiko, Opt. Spectrosc. 117, 111–117 (2014). https://doi.org/10.1134/S0030400X14070066

    Article  Google Scholar 

  89. V.A. Loiko, A.V. Konkolovich, Opt. Spectrosc. 85, 563–567 (1998)

    Google Scholar 

  90. V.A. Loiko, A.V. Konkolovich, Opt. Spectrosc. 85, 568–573 (1998)

    Google Scholar 

  91. V.K. Varadan, V.N. Bringi, V.V. Varadan, A. Ishimaru, Radio Sci. 18, 321–327 (1983). https://doi.org/10.1029/RS018i003p00321

    Article  Google Scholar 

  92. J.A. Lock, C.L. Chiu, Appl. Opt. 33, 4663–4671 (1994). https://doi.org/10.1364/AO.33.004663

    Article  Google Scholar 

  93. L. Tsang, J.A. Kong, K.-H. Ding, C.O. Ao, Scattering of Electromagnetic Waves: Numerical Simulations (Wiley, New York, 2001)

    Book  Google Scholar 

  94. L.S. Ornstein, F. Zernike, Proc. Acad. Sci. 17, 793–806 (1914)

    Google Scholar 

  95. J.K. Percus, G.J. Yevick, Phys. Rev. 110, 1–13 (1958). https://doi.org/10.1103/PhysRev.110.1

    Article  Google Scholar 

  96. A.P. Ivanov, V.A. Loiko, V.P. Dick, Rasprostranenie sveta v plotnoupakovannykh dispersnykh sredakh (Propagation of Light in Close-packed Disperse Media). (Nauka i Tekhnika, Minsk, 1988) (in Russian)

    Google Scholar 

  97. R. Rengarajan, D. Mittleman, C. Rich, V. Colvin, Phys. Rev. E 71, 016615-1–01661511 (2005). https://doi.org/10.1103/PhysRevE.71.016615

    Article  Google Scholar 

  98. T. Prasad, V.L. Colvin, D.M. Mittleman, Opt. Express 15, 16954–16965 (2007). https://doi.org/10.1364/OE.15.016954

    Article  Google Scholar 

  99. A. Ishimaru, Y. Kuga, J. Opt. Soc. Am. 72, 1317–1320 (1982). https://doi.org/10.1364/JOSA.72.001317

    Article  Google Scholar 

  100. Y. Okada, A.A. Kokhanovsky, J. Quant. Spectrosc. Radiat. Transf. 110, 902–917 (2009). https://doi.org/10.1016/j.jqsrt.2008.12.007

    Article  Google Scholar 

  101. V.A. Loiko, G.I. Ruban, Opt. Spectrosc. 88, 756–761 (2000). https://doi.org/10.1134/1.626872

    Article  Google Scholar 

  102. V.A. Loiko, G.I. Ruban, J. Quant. Spectrosc. Radiat. Transf. 89, 271–278 (2004). https://doi.org/10.1016/j.jqsrt.2004.05.040

    Article  Google Scholar 

  103. V.A. Loiko, V.V. Berdnik, The Journal of Photographic Science 48, 12–25 (2003)

    Google Scholar 

  104. V.V. Berdnik, V.A. Loiko, J. Quant. Spectrosc. Radiat. Transf. 63, 369–382 (1999). https://doi.org/10.1016/S0022-4073(99)00025-4

    Article  Google Scholar 

  105. V.A. Loiko, V.V. Berdnik, Part. Part. Syst. Charact. 15, 115–121 (1998.) 10.1002/(SICI)1521-4117(199817)15:3<115::AID-PPSC115>3.0.CO;2-N

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the Belarusian Republican Foundation for Fundamental Research (project F15IC-005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Miskevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miskevich, A.A., Loiko, V.A. (2018). Absorption by Particulate Silicon Layer: Theoretical Treatment to Enhance Efficiency of Solar Cells. In: Ikhmayies, S. (eds) Advances in Silicon Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-69703-1_3

Download citation

Publish with us

Policies and ethics