Skip to main content

Sample Preparation for 2DE Using Samples of Animal Origin

  • Chapter
  • First Online:
Proteomics in Domestic Animals: from Farm to Systems Biology

Abstract

Protein separation by two-dimensional gel electrophoresis (2DE) is a well-established technique for proteome analysis. Despite the enormous potential of this methodology for resolving proteins in complex samples, the fact is that its use is limited and often avoided due to inadequate sample preparation. It is understood as being especially critical for 2DE-based proteomics research that samples need to be of good quality, and this goal could be accomplished by optimizing or adapting the sample preparation protocols to the specificities (i.e., chemical composition) of biological samples. Sample preparation protocols should also comply with the objectives of the research. For selection of the adequate protocol and for its optimization, it is therefore important first to know the distinct steps that constitute a protocol and the main objectives underlying each step. Secondly, it is important to understand the potential limitations of the biological samples hence to perform the necessary adjustments/alterations to the protocol. This chapter aims to review the major steps of sample preparation protocols for 2DE with particular focus on optimization, taking into account specificities of the biological samples. The main technical aspects concerning sample tissue disruption and cell lysis, protein extraction, fractionation, enrichment, and solubilization prior to 2DE will be presented and discussed. In this chapter, the most common biological samples employed in proteomics and 2DE research and corresponding sample preparation methods will be reviewed. This follows a brief discussion on 2DE and MALDI-TOF approaches. A selection of methods for 2DE sample preparation is included based on the authors’ experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

2DE:

Two-dimensional gel electrophoresis

CHAPS:

3-[(3-Cholamidopropyl) dimethylammonio]-1-propanesulfonate

CPLL:

Combinatorial peptide ligand libraries

DDM:

n-Dodecyl β-d-maltoside

DTT:

Dithiothreitol

HPLC:

High-performance liquid chromatography

IAA:

Iodoacetamide

IEF:

Isoelectric focusing

LC-MS:

Liquid chromatography coupled with mass spectrometry

MALDI-TOF:

Matrix-assisted laser desorption/ionization—time of flight

SDS:

Sodium dodecyl sulfate

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

References

  • de Almeida AM, Bendixen E (2012) Pig proteomics: a review of a species in the crossroad between biomedical and food sciences. J Proteome 75:4296–4314

    Article  Google Scholar 

  • Almeida AM, Campos A, Francisco R et al (2010) Proteomic investigation of the effects of weight loss in the gastrocnemius muscle of wild and NZW rabbits via 2D-electrophoresis and MALDI-TOF MS. Anim Genet 41:260–272

    Article  CAS  PubMed  Google Scholar 

  • Almeida AM, Parreira JR, Santos R et al (2012) A proteomics study of the induction of somatic embryogenesis in Medicago truncatula using 2DE and MALDI-TOF/TOF. Physiol Plant 146:236–249

    Article  CAS  PubMed  Google Scholar 

  • Almeida AM, Bassols A, Bendixen E et al (2015) Animal board invited review: advances in proteomics for animal and food sciences. Animal 9:1–17

    Article  CAS  PubMed  Google Scholar 

  • Almeida AM, Palhinhas RG, Kilminster T et al (2016) The effect of weight loss on the muscle proteome in the Damara, Dorper and Australian Merino ovine breeds. PLoS One 11:e0146367

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson NL, Polanski M, Pieper R et al (2004) The human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol Cell Proteomics 3:311–326

    Article  CAS  PubMed  Google Scholar 

  • Andrew SM, Titus JA, Zumstein L (2001) Dialysis and concentration of protein solutions. Curr Protoc Immunol Appendix 3:A.3H.1-5

    Google Scholar 

  • Aschermann, K., Lutter P, Wattenberg A (2008) Current status of protein quantification technologies. Precision and statistical significance Bioprocess Int 44–53

    Google Scholar 

  • Barbosa AD, Pereira C, Osório H et al (2016) The ceramide-activated protein phosphatase Sit4p controls lifespan, mitochondrial function and cell cycle progression by regulating hexokinase 2 phosphorylation. Cell Cycle 15:1620–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bislev SL, Deutsch EW, Sun Z et al (2012) A Bovine PeptideAtlas of milk and mammary gland proteomes. Proteomics 12:2895–2899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boschetti E, Righetti PG (2008) The ProteoMiner in the proteomic arena: a non-depleting tool for discovering low-abundance species. J Proteome 71:255–264

    Article  CAS  Google Scholar 

  • Brown S, Norris G (2016) Improved consistency in 2D gel electrophoresis: sheep plasma as a test case. Electrophoresis 38:906–913

    Article  Google Scholar 

  • Burgess RR (2009) Protein precipitation techniques. Methods Enzymol 463:331–342

    Article  CAS  PubMed  Google Scholar 

  • Burstin J, Zivy M, Devienne D, Damerval C (1993) Analysis of scaling methods to minimize experimental variations in 2-dimensional electrophoresis quantitative data: application to the comparison of maize inbred lines. Electrophoresis 14:1067–1073

    Article  CAS  PubMed  Google Scholar 

  • Cai K, Chen K, Liu X et al (2008) Differential expression of haemolymph proteome of resistant strain and susceptible strain for BmNPV in Bombyx mori L. Sheng Wu Gong Cheng Xue Bao 24:285–290

    CAS  PubMed  Google Scholar 

  • Campos A, Puerto M, Prieto A et al (2013) Protein extraction and two-dimensional gel electrophoresis of proteins in the marine mussel Mytilus galloprovincialis: an important tool for protein expression studies, food quality and safety assessment. J Sci Food Agric 93:1779–1787

    Article  CAS  PubMed  Google Scholar 

  • Cao Z, Yende S, Kellum JA, Robinson RAS (2013) Additions to the Human plasma proteome via a tandem MARS depletion iTRAQ-based workflow. Int J Proteomics 2013:654356

    Article  PubMed  PubMed Central  Google Scholar 

  • Clement CC, Aphkhazava D, Nieves E et al (2013) Protein expression profiles of human lymph and plasma mapped by 2D-DIGE and 1D SDS-PAGE coupled with nanoLC-ESI-MS/MS bottom-up proteomics. J Proteome 78:172–187

    Article  CAS  Google Scholar 

  • Correia M, Michel V, Osorio H et al (2013) Crosstalk between Helicobacter pylori and gastric epithelial cells is impaired by docosahexaenoic acid. PLoS One 8:e60657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz De Carvalho R, Bernardes Da Silva A, Soares R et al (2014) Differential proteomics of dehydration and rehydration in bryophytes: Evidence towards a common desiccation tolerance mechanism. Plant Cell Environ 37:1499–1515

    Article  CAS  PubMed  Google Scholar 

  • Cugno G, Parreira JR, Ferlizza E et al (2016) The goat (Capra hircus) mammary gland mitochondrial proteome: a study on the effect of weight loss using blue-native page and two-dimensional gel electrophoresis. PLoS One 11:e0151599

    Article  PubMed  PubMed Central  Google Scholar 

  • Damerval C, De Vienne D, Zivy M, Thiellement H (1986) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7:52–54

    Article  CAS  Google Scholar 

  • Damerval C, Le GM, Blaisonneau J et al (1987) A simplification of Heukeshoven and Dernick’s silver staining of proteins. Electrophoresis 8:158–159

    Article  CAS  Google Scholar 

  • Damerval C, Maurice A, Josse JM, De Vienne D (1994) Quantitative trait loci underlying gene product variation: A novel perspective for analyzing regulation of genome expression. Genetics 137:289–301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Devraj K, Geguchadze R, Klinger ME et al (2009) Improved membrane protein solubilization and clean-up for optimum two-dimensional electrophoresis utilizing GLUT-1 as a classic integral membrane protein. J Neurosci Methods 184:119–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckersall PD, Miller I, de Almeida AM (2012) Proteomics, a new tool for farm animal science. J Proteome 75:4187–4189

    Article  CAS  Google Scholar 

  • Ferlizza E, Campos A, Neagu A et al (2015) The effect of chronic kidney disease on the urine proteome in the domestic cat (Felis catus). Vet J 204:73–81

    Article  CAS  PubMed  Google Scholar 

  • Ferreira AM, Bislev SL, Bendixen E, Almeida AM (2013) The mammary gland in domestic ruminants: a systems biology perspective. J Proteome 94:110–123

    Article  CAS  Google Scholar 

  • Ferreirinha P, Correia A, Teixeira-Coelho M et al (2016) Mucosal immunization confers long-term protection against intragastrically established Neospora caninum infection. Vaccine 34:6250–6258

    Article  CAS  PubMed  Google Scholar 

  • Fic E, Kedracka-Krok S, Jankowska U et al (2010) Comparison of protein precipitation methods for various rat brain structures prior to proteomic analysis. Electrophoresis 31:3573–3579

    Article  CAS  PubMed  Google Scholar 

  • Finehout EJ, Franck Z, Lee KH (2004) Towards two-dimensional electrophoresis mapping of the cerebrospinal fluid proteome from a single individual. Electrophoresis 25:2564–2575

    Article  CAS  PubMed  Google Scholar 

  • Gantayet A, Ohana L, Sone ED (2013) Byssal proteins of the freshwater zebra mussel, Dreissena polymorpha. Biofouling 29:77–85

    Article  CAS  PubMed  Google Scholar 

  • Gazzana G, Borlak J (2007) Improved method for proteome mapping of the Liver by 2-DE MALDI-TOF MS. J Proteome Res 6:3143–3151

    Article  CAS  PubMed  Google Scholar 

  • Gomes C, Almeida A, Ferreira JA et al (2013) Glycoproteomic analysis of serum from patients with gastric precancerous lesions. J Proteome Res 12:1454–1466

    Article  CAS  PubMed  Google Scholar 

  • Görg a OC, Boguth G et al (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037–1053

    Article  PubMed  Google Scholar 

  • Hao R, Adoligbe C, Jiang B et al (2015) An optimized trichloroacetic acid/acetone precipitation method for two-dimensional gel electrophoresis analysis of Qinchuan cattle longissimus dorsi muscle containing high proportion of marbling. PLoS One 10:e0124723

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández-Castellano LE, Almeida AM, Ventosa M et al (2014) The effect of colostrum intake on blood plasma proteome profile in newborn lambs: low abundance proteins. BMC Vet Res 10:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández-Castellano LE, Almeida AM, Renaut J et al (2016) A proteomics study of colostrum and milk from the two major small ruminant dairy breeds from the Canary Islands: a bovine milk comparison perspective. J Dairy Res 83:366–374

    Article  PubMed  Google Scholar 

  • Hou Y, Xia Q, Zhao P et al (2007) Studies on middle and posterior silk glands of silkworm (Bombyx mori) using two-dimensional electrophoresis and mass spectrometry. Insect Biochem Mol Biol 37:486–496

    Article  CAS  PubMed  Google Scholar 

  • Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81:802–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Immel F, Broussard C, Catherinet B et al (2016) The shell of the invasive bivalve species Dreissena polymorpha: biochemical, elemental and textural Investigations. PLoS One 11:1–28

    Article  Google Scholar 

  • Jan Van Wijk K (2000) Proteomics of the chloroplast: experimentation and prediction. Trends Plant Sci 5:420–425

    Article  CAS  PubMed  Google Scholar 

  • Jia JL, Zhang LP, Wu JP et al (2014) Establishment of the optimum two-dimensional electrophoresis system of ovine ovarian tissue. Genet Mol Res 13:6528–6538

    Article  CAS  PubMed  Google Scholar 

  • Journet A, Chapel A, Kieffer S et al (2002) Proteomic analysis of human lysosomes: application to monocytic and breast cancer cells. Proteomics 2:1026–1040

    Article  CAS  PubMed  Google Scholar 

  • Kanaeva IP, Petushkova NA, Lisitsa AV et al (2005) Proteomic and biochemical analysis of the mouse liver microsomes. Toxicol In Vitro 19:805–812

    Article  CAS  PubMed  Google Scholar 

  • Kao SH, Wong HK, Chiang CY, Chen HM (2008) Evaluating the compatibility of three colorimetric protein assays for two-dimensional electrophoresis experiments. Proteomics 8:2178–2184

    Article  CAS  PubMed  Google Scholar 

  • Kaur P, Reis MD, Couchman GR et al (2010) SERPINE 1 links obesity and diabetes: a pilot study. J Proteomics Bioinform 3:191–199. https://doi.org/10.4172/jpb.1000139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YH, Tan HT, Chung MCM (2010) Subcellular fractionation methods and strategies for proteomics. Proteomics 10:3935–3956

    Article  CAS  PubMed  Google Scholar 

  • Lescuyer P, Strub J-M, Luche S et al (2003) Progress in the definition of a reference human mitochondrial proteome. Proteomics 3:157–167

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Qiu F, Voss C et al (2011) Evaluation of three high abundance protein depletion kits for umbilical cord serum proteomics. Proteome Sci 9:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcelino I, de Almeida AM, Brito C et al (2012a) Proteomic analyses of Ehrlichia ruminantium highlight differential expression of MAP1-family proteins. Vet Microbiol 156:305–314

    Article  CAS  PubMed  Google Scholar 

  • Marcelino I, de Almeida AM, Ventosa M et al (2012b) Tick-borne diseases in cattle: applications of proteomics to develop new generation vaccines. J Proteome 75:4232–4250

    Article  CAS  Google Scholar 

  • Martins JC, Campos A, Osório H et al (2014) Proteomic profiling of cytosolic glutathione transferases from three bivalve species: Corbicula fluminea, Mytilus galloprovincialis and Anodonta cygnea. Int J Mol Sci 15:1887–1900

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller I, Rogel-Gaillard C, Spina D et al (2014) The Rabbit as an experimental and production animal: from genomics to proteomics. Curr Protein Pept Sci 15:134–145

    Article  CAS  PubMed  Google Scholar 

  • Moore SM, Hess SM, Jorgenson JW (2016) Extraction, enrichment, solubilization, and digestion techniques for membrane proteomics. J Proteome Res 15:1243–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nally JE, Whitelegge JP, Aguilera R et al (2005) Purification and proteomic analysis of outer membrane vesicles from a clinical isolate of Leptospira interrogans serovar Copenhageni. Proteomics 5:144–152

    Article  CAS  PubMed  Google Scholar 

  • Noble JE, Bailey MJA (2009) Quantitation of Protein. Methods Enzymol 463:73–95

    Article  CAS  PubMed  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  PubMed Central  Google Scholar 

  • Okutucu B, Dınçer A, Habib Ö, Zıhnıoglu F (2007) Comparison of five methods for determination of total plasma protein concentration. J Biochem Biophys Methods 70:709–711

    Article  CAS  PubMed  Google Scholar 

  • Osorio H, Reis CA (2013) Mass spectrometry methods for studying glycosylation in cancer. Methods Mol Biol 1007:301–316

    Article  CAS  PubMed  Google Scholar 

  • Paredi G, Raboni S, Bendixen E et al (2012) “Muscle to meat” molecular events and technological transformations: The proteomics insight. J Proteome 75:4275–4289

    Article  CAS  Google Scholar 

  • Paredi G, Sentandreu MA, Mozzarelli A et al (2013) Muscle and meat: New horizons and applications for proteomics on a farm to fork perspective. J Proteome 88:58–82

    Article  CAS  Google Scholar 

  • Pixton KL, Deeks ED, Flesch FM et al (2004) Sperm proteome mapping of a patient who experienced failed fertilization at IVF reveals altered expression of at least 20 proteins compared with fertile donors: case report. Hum Reprod 19:1438–1447

    Article  PubMed  Google Scholar 

  • Puerto M, Campos A, Prieto A et al (2011) Differential protein expression in two bivalve species; Mytilus galloprovincialis and Corbicula fluminea; exposed to Cylindrospermopsis raciborskii cells. Aquat Toxicol 101:109–116

    Article  CAS  PubMed  Google Scholar 

  • Quaranta S, Giuffrida MG, Cavaletto M et al (2001) Human proteome enhancement: high-recovery method and improved two-dimensional map of colostral fat globule membrane proteins. Electrophoresis 22:1810–1818

    Article  CAS  PubMed  Google Scholar 

  • Rajalingam D, Loftis C, JJ X, Kumar TKS (2009) Trichloroacetic acid-induced protein precipitation involves the reversible association of a stable partially structured intermediate. Protein Sci 18:980–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roncada P, Piras C, Soggiu A et al (2012) Farm animal milk proteomics. J Proteome 75:4259–4274

    Article  CAS  Google Scholar 

  • Roy A, Varshney U, Pal D (2014) Avoiding acidic region streaking in two-dimensional gel electrophoresis: case study with two bacterial whole cell protein extracts. J Biosci 39:631–642

    Article  CAS  PubMed  Google Scholar 

  • Santucci L, Candiano G, Bruschi M et al (2012) Combinatorial peptide ligand libraries for the analysis of low-expression proteins: validation for normal urine and definition of a first protein MAP. Proteomics 12:509–515

    Article  CAS  PubMed  Google Scholar 

  • Sapan CV, Lundblad RL (2015) Review of methods for determination of total protein and peptide concentration in biological samples. Proteomics Clin Appl 9:268–276

    Article  CAS  PubMed  Google Scholar 

  • Seow TK, Ong SE, Liang RCMY et al (2000) Two-dimensional electrophoresis map of the human hepatocellular carcinoma cell line, HCC-M, and identification of the separated proteins by mass spectrometry. Electrophoresis 21:1787–1813

    Article  CAS  PubMed  Google Scholar 

  • Service RF (2008) Proteomics. Proteomics ponders prime time. Science 321:1758–1761

    Article  PubMed  Google Scholar 

  • Shan LP, Li H, Fan Y et al (2012) Comparison of different methods of rat amniotic fluid sample preparation for 2-D electrophoresis. Chinese. J Med Genet 29:669–672

    CAS  Google Scholar 

  • Simpson DM, Beynon RJ (2010) Acetone precipitation of proteins and the modification of peptides. J Proteome Res 9:444–450

    Article  CAS  PubMed  Google Scholar 

  • Snelling TJ, Wallace RJ (2017) The rumen microbial metaproteome as revealed by SDS-PAGE. BMC Microbiol 17:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Soares R, Franco C, Pires E et al (2012) Mass spectrometry and animal science: protein identification strategies and particularities of farm animal species. J Proteome 75:4190–4206

    Article  CAS  Google Scholar 

  • Sousa R, Osorio H, Duque L et al (2014) Identification of Plantago lanceolata pollen allergens using an immunoproteomic approach. J Investig Allergol Clin Immunol 24:177–183

    CAS  PubMed  Google Scholar 

  • Sun W, Jiang Y, He F (2011) Extraction and proteome analysis of liver tissue interstitial fluid. Methods Mol Biol 728:247–257

    Article  CAS  PubMed  Google Scholar 

  • Valente RH, Guimarães PR, Junqueira M et al (2009) Bothrops insularis venomics: a proteomic analysis supported by transcriptomic-generated sequence data. J Proteome 72:241–255

    Article  CAS  Google Scholar 

  • Valério E, Campos A, Osório H, Vasconcelos V (2016) Proteomic and Real-Time PCR analyses of Saccharomyces cerevisiae VL3 exposed to microcystin-LR reveals a set of protein alterations transversal to several eukaryotic models. Toxicon 112:22–28

    Article  PubMed  Google Scholar 

  • Wallace RJ, Snelling TJ, McCartney CA et al (2017) Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism. Genet Sel Evol 49:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Walls D, Loughran ST (eds) (2011) Protein chromatography: methods and protocols. Humana Press, New York

    Google Scholar 

  • Wu HC, Chen TN, Kao SH et al (2010) Isoelectric focusing management: an investigation for salt interference and an algorithm for optimization. J Proteome Res 9:5542–5556

    Article  CAS  PubMed  Google Scholar 

  • Zubarev RA (2013) The challenge of the proteome dynamic range and its implications for in-depth proteomics. Proteomics 13:723–726

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A. Campos’ work is supported by postdoctoral grant (SFRH/BPD/103683/2014) from FCT. IPATIMUP integrates the i3S Research Unit, which is partially supported by FCT, the Portuguese Foundation for Science and Technology. This work was financed by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE 2020, Operacional Programme for Competitiveness and Internationalization (POCI), Portugal 2020, and Portuguese funds through FCT (Foundation for Science and Technology/Ministério da Ciência, Tecnologia e Inovação) in the framework of the projects “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274), “PEst-C/SAU/LA0003/2013” and “UID/multi/04423/2013”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Campos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Osório, H., de Almeida, A.M., Campos, A. (2018). Sample Preparation for 2DE Using Samples of Animal Origin. In: de Almeida, A., Eckersall, D., Miller, I. (eds) Proteomics in Domestic Animals: from Farm to Systems Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-69682-9_4

Download citation

Publish with us

Policies and ethics