Advertisement

Comparison of Contactless Testing Methodologies

  • Selahattin Sayil
Chapter

Abstract

An ideal contactless probing system would be relatively easy, inexpensive to operate, and compatible with the existing test equipment. It would not cause any perturbation on the circuit under test and would measure electric signals with minimum cross talk. The bandwidth of the test system for logic signals would be in GHz region, and the method would not be limited to certain materials. This chapter presents a review of state-of-the-art contactless testing methodologies that covered in this text and makes a comparison based on above properties. This will be valuable to readers as contactless probing is gaining more importance as fabrication technologies become smaller and more susceptible to the parasitic impact of mechanical probes.

Keywords

Contactless testing Non-contact logic test Electro-optic probe Photoemissive probe Electron beam probing OBIC method Photoexcitation probe Light emission testing 

References

  1. 1.
    W.R. Mann et al. The leading edge of production wafer probe test technology, in Proceedings of International Test Conference, 2004, pp. 1168–1195Google Scholar
  2. 2.
    S. Sayil, D.V. Kerns, S.E. Kerns, Comparison of contactless measurement and testing techniques to a new all-silicon optical test and characterization method. IEEE Trans. Instrum. Meas. 54(5), 2082–2089 (2005)CrossRefGoogle Scholar
  3. 3.
    S. Sayil, “Optical Contactless Probing: An all-silicon, fully optical approach”- Special feature article. IEEE Des. Test Comput. 23(2), 138–146 (2006)CrossRefGoogle Scholar
  4. 4.
    M. Sartori, Contactless testing using EB techniques: an important support to the debug of modern VLSI, in Proceedings of International IEEE Semiconductor Conference, CAS’95, 1995, pp. 545–555Google Scholar
  5. 5.
    F. Marc, H. Fremont, P. Jounet, M. Barre, Y. Danto, A general methodology using an electron beam tester applied to failure localization inside a logic IC. Microelectron. Eng. 26, 181–193 (1995)CrossRefGoogle Scholar
  6. 6.
    C. Bouvet, P. Fouillat, J.P. Dom, Y. Danto, ASIC’s failure analysis using two complementary techniques: External electrical testing and internal contactless laser beam testing. Qual. Reliab. Eng. Int. 8, 213–217 (1992)CrossRefGoogle Scholar
  7. 7.
    J. Quincke, E. Plies, J. Otto, Circuit analysis in ICs using the scanning laser microscope. SPIE: Scanning Imaging 1028, 211–216 (1988)Google Scholar
  8. 8.
    R. Clauberg, Picosecond photoemission probing of IC’s. IBM J. Res. Dev. 34(2/3), 189–202 (1990)Google Scholar
  9. 9.
    P. May, J.-M. Halbout, G. Chiu, Photoelectron scanning electron microscope for high speed noncontact testing, in SPIE: Characterization of Very High Speed Semiconductor Devices and Integrated Circuits, vol. 795, 1987, pp. 201–269.Google Scholar
  10. 10.
    J.M. Wiesenfeld, Electrooptic sampling of high-speed devices and integrated circuits. IBM J. Res. Dev. 34(2/3), 141–161 (1990)CrossRefGoogle Scholar
  11. 11.
    W. Mertin, New aspect in electro-optic sampling. Microelectron. Eng. 31, 365–376 (1996)CrossRefGoogle Scholar
  12. 12.
    K.J. Weingarten, Picosecond optical sampling of GaAs IC’s. IEEE J. Quantum Electron. 24, 198–220 (1988)CrossRefGoogle Scholar
  13. 13.
    H.K. Heinrich, A non-invasive optical probe for detecting electrical signals in silicon integrated circuits. PhD dissertation, April 1987.Google Scholar
  14. 14.
    H.K. Heinrich, Picosecond noninvasive optical detection of internal electrical signals in flip-chip mounted silicon IC’s. IBM J. Res. Dev. 34(2/3), 162–172 (1990)CrossRefGoogle Scholar
  15. 15.
    C. Bohm, Electric Force Microscope. Microelectron. Eng. 31, 171–179 (1996)CrossRefGoogle Scholar
  16. 16.
    G. Solkner, E. Wolfgang, C. Bohm, New diagnosis techniques for submicron IC’s, in Proceedings of the 20th European Solid-State Circuits Conference (ESSCIRC), 1994, pp. 11–17.Google Scholar
  17. 17.
    H. Bergner, K. Hempel, G. Sargsjan, Contactless detection of optical induced current in microelectronic devices by capacitive coupling. Microelectron. Eng. 31, 115–122 (1996)CrossRefGoogle Scholar
  18. 18.
    E.F. Scarselli, L. Perilli, L. Perugini, R. Canegallo, A 40 nm CMOS I/O pad design with embedded capacitive coupling receiver for non-contact wafer probe test. IEEE Trans. Circuits Syst. I: Regul. Pap. 62(7), 1737–1746 (2015)CrossRefGoogle Scholar
  19. 19.
    J.C. Tsang, J.A. Kash, Picosecond hot electron light emission from CMOS circuits. Appl. Phys. Lett. 70(7), 889–891 (1997)CrossRefGoogle Scholar
  20. 20.
    A. Chatterjee, P. Mongkolkachit, B. Bhuva, A. Verma, All Si-based optical interconnect for interchip signal transmission. IEEE Photon. Technol. Lett. 15(11), 1663–1665 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Selahattin Sayil
    • 1
  1. 1.Lamar UniversityBeaumontUSA

Personalised recommendations