Skip to main content

Large, Valley-Exclusive Bloch-Siegert Shift in Monolayer WS2

  • Chapter
  • First Online:
Coherent Light-Matter Interactions in Monolayer Transition-Metal Dichalcogenides

Part of the book series: Springer Theses ((Springer Theses))

  • 1546 Accesses

Abstract

Coherent interaction with off-resonance light can be used to shift the energy levels of atoms, molecules, and solids. The dominant effect is the optical Stark shift, but there is an additional contribution from the so-called Bloch-Siegert shift that has eluded direct and exclusive observation so far, particularly in solids. We observe an exceptionally large Bloch-Siegert shift in monolayer WS2 under infrared optical driving [1]. By controlling the light helicity, we can confine the Bloch-Siegert shift to occur only at one valley and the optical Stark shift at the other valley, because the two effects are found to obey opposite selection rules at different valleys. Such a large and valley-exclusive Bloch-Siegert shift allows for enhanced control over the valleytronic properties of two-dimensional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.J. Sie et al., Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017)

    Article  ADS  Google Scholar 

  2. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions (Wiley, Chichester, 1998)

    Book  Google Scholar 

  3. J.H. Shirley, Solution of Schrodinger equation with a Hamiltonian periodic in time. Phys. Rev. 138, B979–B987 (1965)

    Article  ADS  Google Scholar 

  4. S.H. Autler, C.H. Townes, Stark effect in rapidly varying fields. Phys. Rev. 100, 703–722 (1955)

    Article  ADS  Google Scholar 

  5. F. Bloch, A. Siegert, Magnetic resonance for nonrotating fields. Phys. Rev. 57, 522–527 (1940)

    Article  ADS  Google Scholar 

  6. W.E. Lamb, R.C. Retherford, Fine structure of the hydrogen atom by a microwave method. Phys. Rev. 72, 241–243 (1947)

    Article  ADS  Google Scholar 

  7. H.A. Bethe, The electromagnetic shift of energy levels. Phys. Rev. 72, 339–341 (1947)

    Article  ADS  MATH  Google Scholar 

  8. R. Grimm, M. Weidemüller, Y.B. Ovchinnikov, Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95–170 (2000)

    Article  ADS  Google Scholar 

  9. T. Niemczyk et al., Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6, 772–776 (2010)

    Article  Google Scholar 

  10. P. Forn-Diaz et al., Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. Phys. Rev. Lett. 105, 237001 (2010)

    Article  ADS  Google Scholar 

  11. J. Tuorila et al., Stark effect and generalized Bloch-Siegert shift in a strongly driven two-level system. Phys. Rev. Lett. 105, 257003 (2010)

    Article  ADS  Google Scholar 

  12. B. H. Bransden, C. J. Joachain, Physics of Atoms and Molecules. 2nd ed. (Addison-Wesley, 2003)

    Google Scholar 

  13. E.T. Jaynes, F.W. Cummings, Comparison of quantum and semiclassical radiation theories with application to beam maser. Proc. IEEE 51, 89–109 (1963)

    Article  Google Scholar 

  14. M.D. Crisp, Jaynes-cummings model without the rotating-wave approximation. Phys. Rev. A 43, 2430–2435 (1991)

    Article  ADS  Google Scholar 

  15. Y.H. Lee et al., Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012)

    Article  Google Scholar 

  16. Y.H. Lee et al., Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 13, 1852–1857 (2013)

    Article  ADS  Google Scholar 

  17. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)

    Article  ADS  Google Scholar 

  18. A. Chernikov et al., Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014)

    Article  ADS  Google Scholar 

  19. X. Liu et al., Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photonics 9, 30–34 (2014)

    Article  ADS  Google Scholar 

  20. D. Xiao, G.B. Liu, W. Feng, X. Xu, W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012)

    Article  ADS  Google Scholar 

  21. K.F. Mak, K.L. He, J. Shan, T.F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012)

    Article  ADS  Google Scholar 

  22. H.L. Zeng, J.F. Dai, W. Yao, D. Xiao, X.D. Cui, Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012)

    Article  ADS  Google Scholar 

  23. T. Cao et al., Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012)

    Article  Google Scholar 

  24. S. Wu et al., Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys. 9, 149–153 (2013)

    Article  Google Scholar 

  25. X. Xu, W. Yao, D. Xiao, T.F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014)

    Article  Google Scholar 

  26. K.F. Mak, K.L. McGill, J. Park, P.L. McEuen, Valleytronics. The valley hall effect in MoS2 transistors. Science 344, 1489–1492 (2014)

    Article  ADS  Google Scholar 

  27. P. Rivera et al., Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016)

    Article  ADS  Google Scholar 

  28. J.R. Schaibley et al., Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016)

    Article  ADS  Google Scholar 

  29. E.J. Sie et al., Valley-selective optical stark effect in monolayer WS2. Nat. Mater. 14, 290–294 (2015)

    Article  ADS  Google Scholar 

  30. J. Kim et al., Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014)

    Article  ADS  Google Scholar 

  31. C. Mai et al., Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Lett. 14, 202–206 (2014)

    Article  ADS  Google Scholar 

  32. C. Mai et al., Exciton valley relaxation in a single layer of WS2 measured by ultrafast spectroscopy. Phys. Rev. B 90, 041414(R) (2014)

    Article  ADS  Google Scholar 

  33. E.J. Sie, A.J. Frenzel, Y.-H. Lee, J. Kong, N. Gedik, Intervalley biexcitons and many-body effects in monolayer MoS2. Phys. Rev. B 92, 125417 (2015)

    Article  ADS  Google Scholar 

  34. A. Kundu, H.A. Fertig, B. Seradjeh, Floquet-engineered valleytronics in Dirac systems. Phys. Rev. Lett. 116, 016802 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sie, E.J. (2018). Large, Valley-Exclusive Bloch-Siegert Shift in Monolayer WS2 . In: Coherent Light-Matter Interactions in Monolayer Transition-Metal Dichalcogenides. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-69554-9_6

Download citation

Publish with us

Policies and ethics