Investigating the Relationship Between Tweeting Style and Popularity: The Case of US Presidential Election 2016

  • Farideh TavazoeeEmail author
  • Claudio Conversano
  • Francesco Mola
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 786)


Predicting popularity from social media has been explored about a decade. As far as the number of social media users is soaring, understanding the relationship between popularity and social media is really beneficial because it can be mapped to the real popularity of an entity. The popularity in social media, for instance in Twitter, is interpreted by drawing a relationship between a social media account and its followers. Therefore, in this paper, to understand the popularity of candidates of the US election 2016 in social media, we verify this association in Twitter by analyzing the candidates’ tweets. More specifically, our aim is to assess if candidates put efforts to improve their style of tweeting over time to be more favorable to their followers. We show that Mr. Trump could wisely exploit Twitter to attract more people by tweeting in a well-organized and desirable manner and that tweeting style has increased his popularity in social media.


Popularity US election 2016 Sentiment analysis Twitter Retweet Classification Machine learning 


  1. 1.
    Asur, S., Huberman, B.A.: Predicting the future with social media. In: Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2010, vol. 01, pp. 492–499. IEEE Computer Society, Washington, DC (2010). doi: 10.1109/WI-IAT.2010.63
  2. 2.
    Barbosa, L., Feng, J.: Robust sentiment detection on twitter from biased and noisy data. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters, COLING 2010, pp. 36–44. Association for Computational Linguistics, Stroudsburg, PA, USA (2010).
  3. 3.
    Bradshaw, S., Howard, P.N.: Troops, trolls and troublemakers: a global inventory of organized social media manipulation (2017). Working paper
  4. 4.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). doi: 10.1023/A:1010933404324 CrossRefzbMATHGoogle Scholar
  5. 5.
    Emanet, N., Öz, H.R., Bayram, N., Delen, D.: A comparative analysis of machine learning methods for classification type decision problems in healthcare. Decis. Analytics 1(1), 6 (2014). doi: 10.1186/2193-8636-1-6 CrossRefGoogle Scholar
  6. 6.
    Eysenbach, G.: Can tweets predict citations? metrics of social impact based on twitter and correlation with traditional metrics of scientific impact. J. Med. Internet. Res. 13, e123 (2011)CrossRefGoogle Scholar
  7. 7.
    Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15(1), 3133–3181 (2014). MathSciNetzbMATHGoogle Scholar
  8. 8.
    Gayo-Avello, D.: Don’t turn social media into another ‘literary digest’ poll. Commun. ACM 54(10), 121–128 (2011). doi: 10.1145/2001269.2001297 CrossRefGoogle Scholar
  9. 9.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, Heidelberg (2003). zbMATHGoogle Scholar
  10. 10.
    Henrique, J.: Getoldtweets by python.
  11. 11.
    Jahanbakhsh, K., Moon, Y.: The predictive power of social media: On the predictability of U.S. presidential elections using twitter. CoRR abs/1407.0622 (2014).
  12. 12.
    Jarvis, S.E.: Communicator-in-chief: How barack obama used new media technology to win the white house edited by John Allen Hendricks and Robert Denton Jr. Presidential Stud. Q. 40(4), 800–802 (2010). doi: 10.1111/j.1741-5705.2010.03815.x CrossRefGoogle Scholar
  13. 13.
    Jiang, L., Yu, M., Zhou, M., Liu, X., Zhao, T.: Target-dependent twitter sentiment classification. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, HLT 2011, vol. 1, pp. 151–160. Association for Computational Linguistics, Stroudsburg, PA, USA (2011).
  14. 14.
    Kupavskii, A., Ostroumova, L., Umnov, A., Usachev, S., Serdyukov, P., Gusev, G., Kustarev, A.: Prediction of retweet cascade size over time. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM 2012, NY, USA, pp. 2335–2338 (2012). doi: 10.1145/2396761.2398634
  15. 15.
    Liaw, A., Wiener, M.: Classification and regression by randomforest. R News 2(3), 18–22 (2002).
  16. 16.
    Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–167 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Näppi, J.J., Regge, D., Yoshida, H.: Comparative performance of random forest and support vector machine classifiers for detection of colorectal lesions in CT colonography. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) ABD-MICCAI 2011. LNCS, vol. 7029, pp. 27–34. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28557-8_4 CrossRefGoogle Scholar
  18. 18.
    O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets to polls: linking text sentiment to public opinion time series. In: Proceedings of the Fourth International Conference on Weblogs and Social Media, ICWSM 2010, Washington, DC, USA, 23–26 May 2010 (2010)Google Scholar
  19. 19.
    Oliver, J.E., Rahn, W.M.: Rise of the trumpenvolk. Ann. Am. Acad. Polit. Soc. Sci. 667(1), 189–206 (2016). doi: 10.1177/0002716216662639 CrossRefGoogle Scholar
  20. 20.
    Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: Chair, N.C.C., Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M., Tapias, D. (eds.) Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC 2010). European Language Resources Association (ELRA), Valletta, Malta, May 2010Google Scholar
  21. 21.
    Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2(1–2), 1–135 (2008). doi: 10.1561/1500000011 CrossRefGoogle Scholar
  22. 22.
    Petrovic, S., Osborne, M., Lavrenko, V.: RT to win! predicting message propagation in twitter. In: Proceedings of the Fifth International Conference on Weblogs and Social Media, Barcelona, Catalonia, Spain, 17–21 July 2011 (2011)Google Scholar
  23. 23.
    Suh, B., Hong, L., Pirolli, P., Chi, E.H.: Want to be retweeted? large scale analytics on factors impacting retweet in twitter network. In: Proceedings of the 2010 IEEE Second International Conference on Social Computing, SOCIALCOM 2010, pp. 177–184 (2010). doi: 10.1109/SocialCom.2010.33
  24. 24.
    Tumasjan, A., Sprenger, T., Sandner, P., Welpe, I.: Predicting elections with twitter: What 140 characters reveal about political sentiment. In: Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media, pp. 178–185 (2010)Google Scholar
  25. 25.
    Wang, H., Can, D., Kazemzadeh, A., Bar, F., Narayanan, S.: A system for real-time twitter sentiment analysis of 2012 U.S. presidential election cycle. In: Proceedings of the ACL 2012 System Demonstrations, ACL 2012, pp. 115–120. Association for Computational Linguistics, Stroudsburg, PA, USA (2012).
  26. 26.
    Zaman, T., Fox, E.B., Bradlow, E.T.: A bayesian approach for predicting the popularity of tweets. CoRR abs/1304.6777 (2013).

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Farideh Tavazoee
    • 1
    Email author
  • Claudio Conversano
    • 1
  • Francesco Mola
    • 1
  1. 1.University of CagliariCagliariItaly

Personalised recommendations