Reducing the Degradation of Sentiment Analysis for Text Collections Spread over a Period of Time

  • Yuliya RubtsovaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 786)


This paper presents approaches to improve sentiment classification in dynamically updated text collections in natural language. As social networks are constantly updated by users there is essential to take into account new jargons, vital discussed topics while solving classification task. Therefore two fundamentally different methods for solution this problem are suggested. Supervised machine learning method and unsupervised machine learning method are used for sentiment analysis. The methods are compared and it is shown which method is most applicable in certain cases. Experiments comparing the methods on sufficiently representative text collections are described.


Natural language processing Sentiment analysis Sentiment classification Machine learning 


  1. 1.
    Pang, B., Lillian, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, vol. 10. Association for Computational Linguistics (2002)Google Scholar
  2. 2.
    Turney, P.D.: Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 417–424. Association for Computational Linguistics (2002)Google Scholar
  3. 3.
    Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 347–354. Association for Computational Linguistics, October 2005Google Scholar
  4. 4.
    Rubtsova, Y.V.: Research and development of domain independent sentiment classifier. Trudy SPIIRAN 36, 59–77 (2014)Google Scholar
  5. 5.
    Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment analysis of twitter data. In: Proceedings of the Workshop on Languages in Social Media, pp. 30–38. Association for Computational Linguistics, June 2011Google Scholar
  6. 6.
    Kouloumpis, E., Wilson, T., Moore, J.D.: Twitter sentiment analysis: the good the bad and the OMG!. ICWSM 11(538–541), 164 (2011)Google Scholar
  7. 7.
    Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: LREc, vol. 10, no. 2010 (2010)Google Scholar
  8. 8.
    Lek, H.H., Poo, D.C.: Aspect-based Twitter sentiment classification. In: 2013 IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 366–373. IEEE (2013)Google Scholar
  9. 9.
    Loukachevitch, N., Rubtsova, Y.: Entity-oriented sentiment analysis of tweets: results and problems. In: Král, P., Matoušek, V. (eds.) TSD 2015. LNCS, vol. 9302, pp. 551–559. Springer, Cham (2015). doi: 10.1007/978-3-319-24033-6_62 CrossRefGoogle Scholar
  10. 10.
    Read, J.: Using emoticons to reduce dependency in machine learning techniques for sentiment classification. In: Proceedings of the ACL Student Research Workshop, pp. 43–48. Association for Computational Linguistics (2005)Google Scholar
  11. 11.
    Rubtsova, Y.V.: A method for development and analysis of short text corpus for the review classification task. In: Digital Libraries: Advanced Methods and Technologies, RCDL 2013, pp. 269–275 (2013)Google Scholar
  12. 12.
    Loukachevitch, N., Rubtsova, Y.: Entity-oriented sentiment analysis of tweets: results and problems. In: Král, P., Matoušek, V. (eds.) TSD 2015. LNCS, vol. 9302, pp. 551–559. Springer, Cham (2015). doi: 10.1007/978-3-319-24033-6_62 CrossRefGoogle Scholar
  13. 13.
    Loukachevitch, N., Rubtsova, Y.: SentiRuEval-2016: overcoming time gap and data sparsity in tweet sentiment analysis. In: Proceedings of International Conference on Computational Linguistics and Intellectual Technologies Dialog 2016, pp. 375–384 (2016)Google Scholar
  14. 14.
    Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing, vol. 999. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  15. 15.
    Fan, R.-E., et al.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)zbMATHGoogle Scholar
  16. 16.
    Mohammad, S.M., Kiritchenko, S., Zhu, X.: NRC-Canada: building the state-of-the-art in sentiment analysis of tweets. arXiv preprint arXiv:1308.6242 (2013)
  17. 17.
    Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)CrossRefGoogle Scholar
  18. 18.
    Klekovkina, M.V., Kotelnikov, E.V.: The automatic sentiment text classification method based on emotional vocabulary. In: Digital libraries: Advanced Methods and Technologies, Digital Collections (RCDL-2012), pp. 118–123 (2012)Google Scholar
  19. 19.
    Chetviorkin, I., Loukachevitch, N.: Extraction of domain-specific opinion words for similar domains. In: Proceedings of the Workshop on Information Extraction and Knowledge Acquisition Held in Conjunction with RANLP 2011, pp. 7–12, September 2011Google Scholar
  20. 20.
    Mansour, R., Refaei, N., Gamon, M., Abdul-Hamid, A., Sami, K.: Revisiting the old kitchen sink: do we need sentiment domain adaptation? In: RANLP, pp. 420–427 (2013)Google Scholar
  21. 21.
    Loukachevitch, N.V., Levchik, A.V.: Creating a general Russian sentiment lexicon. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), European Language Resources Association (ELRA) (2016)Google Scholar
  22. 22.
    Alexeeva, S., Koltsov, S., Koltsova, O.: Linis-crowd. org: a lexical resource for Russian sentiment analysis of social media. Comput. Linguist. Comput. Ontology, 25–34 (2015). Proceedings of the XVIII joint Conference on Internet and modern society (IMS) 2015Google Scholar
  23. 23.
    Titov, I., McDonald, R.: Modeling online reviews with multi-grain topic models. In: Proceedings of the 17th International Conference on World Wide Web, pp. 111–120. ACM, April 2008Google Scholar
  24. 24.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)Google Scholar
  25. 25.
    Levy, O., Goldberg, Y., Dagan, I.: Improving distributional similarity with lessons learned from word embeddings. Trans. Assoc. Comput. Linguist. 3, 211–225 (2015)Google Scholar
  26. 26.
    Mikolov, T., et al.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
  27. 27.
    Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)
  28. 28.
    O’Keefe, T., Koprinska, I.: Feature selection and weighting methods in sentiment analysis. In: Proceedings of the 14th Australasian Document Computing Symposium, Sydney, pp. 67–74, December 2009Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.A.P. Ershov Institute of Informatics SystemsNovosibirsk State UniversiryNovosibirskRussia

Personalised recommendations